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Forstliche Prozesse dienen der geregelten Waldbewirtschaftung entweder direkt (z.B. Planungen, WalderschlieRR-
ung, Bestandespflege, Holzbereitstellung, SchutzmaBnahmen, Jagd, etc.), oder sie unterstiitzen diese, indem sie
erforderliche Informationen bereitstellen (z.B. Landkarten, Kartierungen, Datenbanken, Forschung und Lehre),
oder indem sie die technischen Voraussetzungen dafiir bereitstellen, die vorhandenen/gewonnenen Informatio-
nen aufzubereiten, miteinander zu kombinieren, in geeigneter Form zu visualisieren, zu bearbeiten, zu nutzen,

auszuwerten, zu Ubermitteln sowie die Kommunikation zu gewahrleisten.

Uber die gezielte Datenerfassung anldsslich verschiedener Inventuren hinaus werden insbesondere bei der hoch-
mechanisierten Holzbereitstellung automatisiert Daten erhoben (z.B. Geolokationen, Waldeigentiimer, Holzdaten,

Maschinendaten, etc.). Das eroffnet neue Moglichkeiten, diese zielfiihrend zu verarbeiten und einzusetzen:

DIREKTE MESSUNG DER HOLZDATEN MIT SENSOREN AN HARVESTERAGGREGATEN/PROZESSOREN

Harvesteraggregate messen den Durchmesser und die Linge jedes einzelnen Stammes/Stammabschnitts. Die
Baumart wird vom Maschinenfiihrer eingegeben [98]. Auf Grundlage statistischer Durchschnittswerte errechnet
der Bordcomputer daraus die Holzmasse [99]. Er speichert die jeweiligen Holzdaten, Maschinendaten und Geo-
positionen im de facto standardisierten Format StanForD [158, 159]. Harvesteraggregate sind nicht eichbar und
missen regelmaRig kalibriert werden. Das Harvestermall (die von seinem Aggregat gemessenen Holzdaten),
insbesondere die Holzmasse, sind deshalb nicht sehr prazise [99]. Dasselbe gilt fiir die vom Harvester automati-
siert ermittelten Geopositionen. lhre Genauigkeit reicht aber bei weitem aus zur intelligenten Prozesssteuerung
der Holzernte und -logistik sowie fiir den Holzverkauf. Zur Abrechnung des gekauften Holzes kdnnen sie dann mit
den prézisen MaRen der geeichten Werkseingangsvermessung des Holzkdufers? korrigiert werden. Zusatzlich
kénnen auf ihrer Grundlage CO-Bilanzen bis auf Ebene der einzelnen Stimme/Stammabschnitte erstellt und alle
Prozesse/die Holzbereitstellungskette insgesamt umfassend optimiert werden [129]. Bisher werden die vom Har-
vester automatisiert ermittelten Holzdaten und Geopositionen verworfen. Das Holz wird nach dem Riicken erneut
manuell aufgenommen und eine Holzliste erstellt [158]. Dies ist personal- und zeitaufwendig. Die manuelle
Messung der Holzdaten ist zudem weniger genau als das Harvestermal. Dasselbe gilt meist fiir die erneute

Ermittlung der Geopositionen der Polter.

Von Harvestern gemessene Holzdaten und Geopositionen wurden als Referenzdaten fiir ALS3-basierte Wald-
inventuren verwendet [100]. Um aus den Stammlangen die Baumhdohen direkt ableiten zu kdnnen, werden neue
Algorithmen entwickelt [101]. Diese sollen Harvester-basierte Inventuren und Analysen durch Integration mit

traditionellen Inventur- und Forstwirtschaftsdaten erleichtern.

UBERTRAGUNG UND AGGREGATION VON DATEN ENTLANG DER HOLZBEREITSTELLUNGSKETTE

Die Holzbereitstellungskette umfasst die Holzernte, den Holzverkauf und die Holzabfuhr. Die vom Harvester auto-
matisiert erfassten Holzdaten und Geolokationen, sowie die zur Berechnung der CO2-Bilanzen erforderlichen
Maschinendaten, sollen jeweils unmittelbar zum Forwarder, zum Polter, zum Holzverkauf, an den Kdufer und zum

Holz-LKW {ibertragen werden. Dabei sollen sie zu Poltern, Losen und Holzlisten aggregiert und ihre Geolokation
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jeweils aktualisiert werden. Gelingt es, dies alles umzusetzen, kann ihr Potential erst ausgeschopft werden, z.B.
um die gesamte Holzbereitstellungskette umfassend zu steuern und zu optimieren. Nachvollziehbare CO,-Bilan-
zen ermoglichen erstmals, die Walddkologie und Nachhaltigkeit in diese umfassende Optimierung einzubeziehen
und dies zweifelsfrei nachzuweisen. Zudem kénnen Verwaltungsvorgange vereinfacht, die Daten z.B. in die Natu-
ralbuchfiihrung eingepflegt werden. Auch Uber ein Fortschreiben der Forsteinrichtungswerke wird bereits nach-
gedacht. In Verbindung mit von den Holz-LKW automatisiert erfassten Wegedaten wird aktuell an einem System
zur intelligenten Steuerung der Holzlogistik mit ,griiner” Routenwahl gearbeitet®. Angelehnt an die Konzepte von
Industrie 4.0 werden zudem die technischen Voraussetzungen geschaffen zur digitalen Vernetzung aller Stake-
holder der Holzbereitstellungskette mittels Digitaler Zwillinge® und einer leistungsfihigen, sicheren und vertrau-

enswiirdigen Datenbasis®.

AUTOMATISIERTES AUSLESEN INDIVIDUELLER ID-CODES DER STAMMABSCHNITTE

Sensoren in den Aggregaten und Maschinen erfassen Holz- und Maschinendaten sowie Geopositionen. Um diese
dem Holz korrekt zuordnen zu kénnen, muss jeder einzelne Stamm/Stammabschnitt eindeutig identifiziert und
im Verlauf der Holzbereitstellungskette mehrfach zweifelsfrei wiedererkannt werden [73]. Aktive Identifizierungs-
technologien beruhen auf der Markierung des Rohholzes, passive auf Merkmalen der Holzstruktur [109]. In das
Aggregat lassen sich kostengiinstige und robuste Markierungssysteme integrieren [105 - 108]. Diese sollen dann
vom Forwarder, Holz-LKW und im Sagewerk automatisiert ausgelesen werden, um so eine durchgangig automa-

tisierte Prozesskette umzusetzen (CO2For-IT).

RFID-TAGS ZUR IDENTIFIKATION DES HOLZES

Aggregate wurden ergdnzt, um RFID-Tags an den Stammabschnitten anzubringen, die dann mehrfach mit Sen-
soren ausgelesen und digital verarbeitet werden konnten [64-85]. In einem Projekt wurden die Baume stehend
mit RFID-Tags markiert und diese beim Riicken und Aufarbeiten mit einem Prozessor ausgelesen. Wahrend ihrer
Aufarbeitung wurden die Daten der Stammabschnitte sowie ihr Bezug zum urspriinglichen Baum codiert, jeweils
in einem neuen RFID-Tag abgelegt und dieser vom Prozessor an ihnen angebracht. Das Verfahren verursachte
keine hoheren Erntekosten als gewdhnliche Seilkran-Hiebe [65]. Ein praxisreifes, patentiertes Verfahren mit sich
im Zellulosebrei riickstandslos auflésender Befestigung der RFID-Tags und einem System zu ihrer mehrfachen
Wiederverwendung wurde von der Holzwirtschaft nicht angenommen [81-85]. Im Jahr 2024 in Osterreich einge-
fihrte Markierungsplattchen mit integriertem RFID-Tag werden aktuell eingesetzt, um eine durchgangig automa-
tisierte Holzbereitstellungskette umzusetzen (CO2For-IT). Praxisversuche, sie mit einem Sensor am Ausleger des

Forwarders/Kran des Holz-LKW auszulesen, verliefen vielversprechend.

Insgesamt sind die Verfahren mit RFID-Tags robust und zuverlassig. Noch sind die 0.g. Markierungsplattchen mit
integriertem RFID-Tag erheblich teurer als die tiblichen Markierungsplattchen. Bei Anwendung in Masse sind mar-

ginale Kosten der Tags und eine erhebliche Effizienzsteigerung der Holzbereitstellung zu erwarten [129].

BIOMETRISCHE IDENTIFIKATION DES HOLZES

Projekte zur Erstellung biometrischer Fingerabdriicke der Schnittflaichen des Rundholzes haben vielversprechen-

de Ergebnisse erzielt. Dazu werden diese z.B. im Harvesteraggregat, im Polter und an der Kappsage im Sagewerk

4 https://www.kwh40.de/co2for-it/

5 https://www.bmv.de/SharedDocs/DE/Anlage/DG/online-fachforum-standards-und-richtlinien-fuer-digitale-
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aufgenommen. Die Bilder werden digital analysiert, die Ergebnisse als eindeutige Codes dargestellt. Je nach Ver-
fahren und dulReren Bedingungen wird im frischen Holz eine hohe bis sehr hohe Wiedererkennungsrate erreicht.
Das Problem einer starken Degradation der Schnittflachen bei langerer Lagerung im Wald sollte durch eine sehr

feine Ansteuerung der Kappsage im Sagewerk gelost werden kénnen [138-139].

NACHHALTIGE UND LEGALE HERKUNFT DES HOLZES, BLOCKCHAIN UND SMART CONTRACTS

Die nachhaltige Ernte und legale Herkunft des bereitgestellten/gehandelten Holzes nachzuweisen, erfordert Tech-
nologien zu seiner Rickverfolgung. Ein digitaler Informationsfluss, zukiinftig vom Wald bis zum Endprodukt, erfor-
dert dariber hinaus Technologien zur Datenhaltung, Datenlibertragung und Vernetzung. Ist dieser gegeben,
ermoglicht er ein umfassendes Monitoring, das Erstellen von CO2-Bilanzen und eine gesamtheitliche Optimierung
aller Prozesse, verfahrenstechnisch, 6konomisch und 6kologisch. Obwohl die Blockchain, erganzt durch ,Smart
Contracts”, zwingend auf das Internet angewiesen ist, wird sie fiir Gebiete ohne Netzabdeckung aktuell als geeig-
nete Technologie betrachtet. In einem verbundenen Datenbank- und Hauptbuch-System speichert sie alle Trans-
aktionen in verschllsselten, in sich abgeschlossenen Paketen. Das Aneinanderreihen dieser Pakete ergibt eine
nachpriifbare Aufzeichnung [141-148]. Bei Anwendung einer verladsslichen Technologie zur Identifikation des
Holzes, ermdglicht diese den Uberpriifbaren Nachweis seiner Nachhaltigkeit und legalen Herkunft und die Durch-

setzung geltenden Rechts im Falle illegal geernteten/gehandelten Holzes [141].

AKTIVITATSERKENNUNG AUF GRUNDLAGE DER AKTUELLEN GEOLOKATION

Uber die digitale Vernetzung der Holzbereitstellungskette und die Verfolgung des Holzes hinaus, kénnen mit Sen-
soren und Ortungssystemen auf Grundlage globaler Satellitennavigation (GNSS) die Bewegungen von Menschen
und Maschinen erkannt [150-155] und innerhalb dynamisch sich verandernder Umgebungen sichere Arbeits-
bereiche definiert werden [156, 157]. Sobald eine exakte Satellitennavigation auch im Wald maoglich ist [155],
sollen Inventuren via Fernerkundung selbst eine exakte Hiebsplanung auf Einzelbaumebene (sic!) und eine
intelligente Geratesteuerung erméglichen (Forstmaschinen bis hin zu autonom sich orientierenden/arbeitenden
Robotern). Als erganzendes Inventurverfahren kénnten Forstmaschinen zukinftig Bestandesparameter erfassen,

z.B. Vorrat, Zuwachs, Verjiingung, Bestandes- und Bodenschaden usw., jeweils vor und nach der Holzernte [158].

Bei aller Begeisterung fiir die technischen Méglichkeiten, erteilt der Autor Uberlegungen, ,eine exakte Hiebspla-
nung auf Einzelbaumebene” ausschliellich digital zu erstellen, eine entschiedene Absage: Da es die Bestandes-
entwicklung Uber Jahrzehnte hinweg steuert, ist das Auszeichnen die zentrale waldbauliche Tatigkeit des Forst-
manns/der Forstfrau. Es m u s s drauRen im Wald erfolgen, um jeden Zukunftsbaum und jeden Bedrédnger einzeln
ansprechen zu kénnen! Werden die Baume dabei digital markiert (im Digitalen Zwilling des Bestandes), so ist

das sicherlich der Kénigsweg.

AKTIVITATSERKENNUNG AUF GRUNDLAGE VON TRAGBAREN SENSOREN

Tragbare Sensoren konnen Aktivitdten von Menschen und Maschinen und dabei auftretende Belastungen in Echt-
zeit erfassen. Zu Verfahrenstechnik, Okonomie und Okologie werden damit auch Arbeitssicherheit und Ergono-
mie einer objektiven Erfassung und umfassenden Optimierung zuganglich [160-165, 167, 168]. Diese Daten
werden sinnvoll mit durch Fernerkundung und von Maschinen erfassten Daten sowie den wechselnden Geoloka-
tionen zusammengefiihrt. Prototypisch umgesetzt ist die Warnung des Harvesterfahrers mit Visualisierung in

Virtual Reality, wenn sich ein Mensch seinem Gefahrenbereich nadhert, in ihn eindringt, oder sich darin befindet.



Smartphones und Smartwatches kénnen RFID- und NFC-Tags auslesen, Gber GNSS die Geolokation bestimmen,
die Daten zwischenspeichern und sie tibertragen, sobald Netzanbindung besteht. Sie eignen sich, um Daten aus-

zulesen (Sensoren, Ergonomie, Forstmaschinen, etc.) und damit auch das Rohholz verlasslich zu verfolgen [161].

Daten werden zunehmend mit Kiinstlicher Intelligenz (KI) ausgewertet und Gber Funknetzwerke/Datensatelliten-
netze libertragen [150-168]. Dabei ist selbstverstandlich sorgfaltig auf den Schutz und die Sicherheit personen-

bezogener Daten zu achten.

WISSENSLUCKEN UND SICH ABZEICHNENDE CHANCEN

Die geschilderten Technologien ermdglichen den Aufbau differenzierter, gesamtheitlich optimierter Systeme, um
vielféltige Ziele zu erreichen. Diese kénnen und sollen sich gegenseitig iberlappen/vernetzen. Sie sollten auf einer
Uber alle Organisationsgrenzen hinweg einheitlichen, sicheren und vertrauenswiirdigen Datenbasis aufbauen
[167-168]. Deren Umsetzung wird eher durch Befindlichkeiten und das ausgepragte gegenseitige Misstrauen

innerhalb des ungemein heterogenen ,Clusters Wald und Holz“ als durch vorhandene Fakten verhindert.

Forschungsergebnisse zur Verbesserung der betrieblichen Effizienz und der Nachhaltigkeit durch den Einsatz digi-
taler Technologien in der forstlichen Praxis sind aktuell rar. Keefe et al. [3] halten eine deutliche Verlagerung der
Forschung flr erforderlich, von der Entwicklung und Evaluierung von Verfahren zur Datenerfassung und zur Fern-
erkundung hin, zur Nutzung der in Inventuren und den forstlichen Prozessen selbst erfassten Daten. Im Anhalt an

sie schlagt der Autor folgende Prioritdten vor, um die Datenverwertung aus forstlichen Prozessen voranzutreiben:

- Optimierung der Waldinventuren
- Optimierung der forstlichen Planungen (z.B. unter Einsatz von GIS/GNSS [6, 165, 170])
- Optimierung der Holzbereitstellung
(Einbeziehen von CO»-Bilanzen [129-132]; Einbeziehen hochauflésender Karten, der Holzpreise und der

Erntekosten, v.a. zur Planung der Holzbereitstellung in wenig oder nicht erschlossenen Gebieten)

- Digitale Unterstiitzung waldbaulicher Verfahren
(Fortschreibung der Naturalbuchfiihrung/Forsteinrichtung; Klimawandel, fremdlandische Baumarten;
Umstellung von Plantagenwirtschaft/Ausbeutung von Naturwaldern zu nachhaltiger Forstwirtschaft,
gef. zu Agroforstwirtschaft; Einbeziehen 6kologischer Parameter in Modellierungen; etc.)

- Maschinennavigation fiir eine verbesserte Automatisierung und Robotik
(Fernerkundung mit Individual Tree Detection ITD; Simultaneous Localization and Mapping SLAM; etc.
Durch Sensoren an der Forstmaschine erkannte Baume werden mit einer vorhandenen Karte abgeglich-
en. Das verbessert die Positionsgenauigkeit des Baumes, der Maschine und/oder des Aggregats. Statt
entfernter, sich bewegender Satelliten, wird der Wald selbst zu einer leistungsstarken Konstellation

fester Referenzpunkte, die fiir die Dauer der Umtriebszeit an derselben Stelle verbleiben.)

- Ubermittlung und Korrektur des jeweiligen Standorts vom stehenden Baum bis zum Werk
(Verbesserung der Genauigkeit der Geoposition; llickenlose Verfolgung des Holzes [40, 73]; automa-
tisches Anbringen kostenglinstiger Markierungen [65] oder markierungslose Identifikation durch das
Harvesteraggregat; direkte Dateniibermittlung machine-to-machine (M2M) in Echtzeit [7, 9]; etc.)

- Verwaltung groBer Datenmengen, auch in abgelegenen Umgebungen
(Datenbasis, Digitale Zwillinge, Kommunikation machine-to-machine (M2M) in Echtzeit; tagliches Ausle-
sen der Edge-Devices der Maschinen und Gerate mit Smartphones als mobile Zwischenspeicher und
Ubermittlung an die Datenbasis, sobald Anbindung an das Telefonnetz/Internet besteht; Einsatz von

Kunstlicher Intelligenz (KI); etc.).



Es sei erneut dringend davor gewarnt, sich von einer erheblich verbesserten Informationsgrundlage dazu verlei-
ten zu lassen, Entscheidungsprozesse zu automatisieren. Umfangreiche, hochwertige Datensatze, Auswertungs-
algorithmen und Modellierungen sind machtige Werkzeuge und damit sehr wertvolle Entscheidungshilfen. Trotz
ihrer hervorragenden Leistungsfahigkeit sind aber auch sie nur Werkzeuge. Wichtige Entscheidungen kann und
muss allein der Mensch treffen. Dazu muss er ggf. all seine Kompetenzen und Erfahrungen einsetzen - und seine

Entscheidungen anschliefend in aller Konsequenz verantworten!

ZUSAMMENFASSUNG

Fir die Planung, Steuerung und das Monitoring des Waldmanagements stehen zunehmend leistungsfahige digi-
tale Werkzeuge aus Fernerkundung, EDV und Kl zur Verfligung. Neben der Erfassung und Auswertung vieler sehr
unterschiedlicher Daten, sind diese zukiinftig sinnvoll zu verknilipfen und operativanzuwenden. Dazu ist eine um-
fassende Vernetzung aller beteiligten Personen, Organisationen, Maschinen und Gerate (iber alle Organisations-
grenzen hinweg erforderlich. Eine sichere Kommunikation und die Ubermittlung auch groRer Datenmengen in
Echtzeit miissen dabei gewahrleistet sein. Es bietet sich an, dies tGber Digitale Zwillinge, eine einheitliche, sichere
und vertrauenswiirdige Datenbasis und den Einsatz der Blockchain aufzubauen. Ob Land- oder Forstwirtschaft,
Gewinnung von Trinkwasser, Umweltschutz, oder Schutz vor Naturgefahren, wir sitzen alle im gleichen Boot - und

bekommen eine wertvolle Chance, uns konstruktiv miteinander zu vernetzen.

Fiir abgelegene Gebiete erschlieRt die ITD-Fernerkundung (Individual Tree Detection) neue Mdoglichkeiten zur
differenzierten Planung, Durchfiihrung und Kontrolle waldbaulicher MaRnahmen, der WalderschlieBung, der
Holzernte (incl. ihrer Ernteeinheiten) und der Holzabfuhr. Fernerkundung kann mittels Satelliten, Flugzeugen,
Drohnen und/oder terrestrisch erfolgen. Die Datenerfassung erfolgt mit Kameras verschiedener Spektral-
bereiche, Radar, LiDAR und verschiedenen Sensoren, ihre Auswertung mit photogrammetrischen Verfahren und
Algorithmen, incl. Kiinstlicher Intelligenz (KI). Die Ergebnisse werden je nach Zweck und Zielgruppe bildlich, gra-
phisch, tabellarisch, in Texten oder mittels Virtual Reality dargestellt. Durch Kombination unterschiedlicher

Tragersysteme und/oder Sensortechniken, kann man ihre Qualitat gezielt steigern.

Um eine durchgingige Verfolgbarkeit und Riickverfolgbarkeit jedes einzelnen Stammes/Stammabschnitts zu ge-
wahrleisten, missen diese eindeutig identifiziert und entlang der gesamten Holzbereitstellungskette mehrfach
zweifelsfrei re-identifiziert werden kénnen. Dazu stehen Technologien mit und ohne Markierung zur Verfligung,
die einem automatisierten Anbringen/Auslesen zuganglich sind. Aktuell erscheint die Markierung des Holzes mit
passiven RFID-Tags als geeignet, um die gewiinschte vollstdndige Automatisierung mittelfristig umzusetzen.
Robuste Hillen und leistungsfahige Antennen habenihre Bewdhrungsprobe in der rauen Praxis bestanden. In
ihnen kénnen Daten Uber einzelne Bdume/Stamme/Stammabschnitte auch langerfristig gespeichert, ggf. mehr-
fach um neue Daten ergdnzt und unkompliziert ausgelesen werden. Dazu kénnen sie, entsprechende Systeme

vorausgesetzt, mehrfach wiederverwendet werden.

Die Blockchain als verteilter, verifizierbarer Mechanismus bietet sich an zur Organisation des Datenraums, zur
Uberpriifung der Holzbereitstellungskette und fiir Zertifizierungen im Forst, Holzhandel und der Holzwirtschaft.
Systeme zur Erkennung menschlicher wie maschineller Aktivitaten, z.B. im sicherheitsrelevanten Umfeld einer
(Forst-) Maschine, erh6hen die Arbeitssicherheit und verbessern die Ergonomie. Dazu ermdglichen sie auch die

Verfolgung des Rohholzes/einzelner Produkte Giber die gesamte Bereitstellungskette hinweg.

Viele Komponenten, die erforderlich sind, um die Informationen und Assets der Forstwirtschaft digital miteinan-
der zu vernetzen, sind bereits vorhanden und erprobt, wenn auch in unterschiedlicher Qualitdt. Um das sich aus
der digitalen Vernetzung ergebende Potential tatsdchlich heben zu kénnen, gilt es nun, noch bestehende Liicken

zu schlieRen, die Vernetzung technisch zu ermdoglichen und sie gemeinsam in die Praxis umzusetzen.
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