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Forstliche Prozesse dienen der geregelten Waldbewirtscha�ung entweder direkt  (z.B. Planungen, Walderschließ-

ung, Bestandespflege, Holzbereitstellung, Schutzmaßnahmen, Jagd, etc.),  oder sie unterstützen diese, indem sie 

erforderliche Informa�onen bereitstellen  (z.B. Landkarten, Kar�erungen, Datenbanken, Forschung und Lehre),   

oder indem sie die technischen Voraussetzungen dafür bereitstellen, die vorhandenen/gewonnenen Informa�o-

nen aufzubereiten, miteinander zu kombinieren, in geeigneter Form zu visualisieren, zu bearbeiten, zu nutzen, 

auszuwerten, zu übermiteln sowie die Kommunika�on zu gewährleisten.  

Über die gezielte Datenerfassung anlässlich verschiedener Inventuren hinaus werden insbesondere bei der hoch-

mechanisierten Holzbereitstellung automa�siert Daten erhoben  (z.B. Geoloka�onen, Waldeigentümer, Holzdaten, 

Maschinendaten, etc.).  Das eröffnet neue Möglichkeiten, diese zielführend zu verarbeiten und einzusetzen:  

DIREKTE MESSUNG DER HOLZDATEN MIT SENSOREN AN HARVESTERAGGREGATEN/PROZESSOREN   

Harvesteraggregate messen den Durchmesser und die Länge jedes einzelnen Stammes/Stammabschnits. Die 

Baumart wird vom Maschinenführer eingegeben [98]. Auf Grundlage sta�s�scher Durchschnitswerte errechnet 

der Bordcomputer daraus die Holzmasse [99]. Er speichert die jeweiligen Holzdaten, Maschinendaten und Geo-

posi�onen im de facto standardisierten Format StanForD [158, 159]. Harvesteraggregate sind nicht eichbar und 

müssen regelmäßig kalibriert werden. Das Harvestermaß  (die von seinem Aggregat gemessenen Holzdaten), 

insbesondere die Holzmasse, sind deshalb nicht sehr präzise [99]. Dasselbe gilt für die vom Harvester automa�-

siert ermitelten Geoposi�onen. Ihre Genauigkeit reicht aber bei weitem aus zur intelligenten Prozesssteuerung 

der Holzernte und -logis�k sowie für den Holzverkauf. Zur Abrechnung des gekau�en Holzes können sie dann mit 

den präzisen Maßen der geeichten Werkseingangsvermessung des Holzkäufers2 korrigiert werden. Zusätzlich 

können auf ihrer Grundlage CO2-Bilanzen bis auf Ebene der einzelnen Stämme/Stammabschnite erstellt und alle 

Prozesse/die Holzbereitstellungskete insgesamt umfassend op�miert werden [129]. Bisher werden die vom Har-

vester automa�siert ermitelten Holzdaten und Geoposi�onen verworfen. Das Holz wird nach dem Rücken erneut 

manuell aufgenommen und eine Holzliste erstellt [158]. Dies ist personal- und zeitaufwendig. Die manuelle 

Messung der Holzdaten ist zudem weniger genau als das Harvestermaß. Dasselbe gilt meist für die erneute 

Ermitlung der Geoposi�onen der Polter.  

Von Harvestern gemessene Holzdaten und Geoposi�onen wurden als Referenzdaten für ALS3-basierte Wald-

inventuren verwendet [100]. Um aus den Stammlängen die Baumhöhen direkt ableiten zu können, werden neue 

Algorithmen entwickelt [101]. Diese sollen Harvester-basierte Inventuren und Analysen durch Integra�on mit 

tradi�onellen Inventur- und Forstwirtscha�sdaten erleichtern.  

ÜBERTRAGUNG UND AGGREGATION VON DATEN ENTLANG DER HOLZBEREITSTELLUNGSKETTE  

Die Holzbereitstellungskete umfasst die Holzernte, den Holzverkauf und die Holzabfuhr. Die vom Harvester auto-

ma�siert erfassten Holzdaten und Geoloka�onen, sowie die zur Berechnung der CO2-Bilanzen erforderlichen 

Maschinendaten, sollen jeweils unmitelbar zum Forwarder, zum Polter, zum Holzverkauf, an den Käufer und zum 

Holz-LKW übertragen werden. Dabei sollen sie zu Poltern, Losen und Holzlisten aggregiert und ihre Geoloka�on 

 
1 CO2ForIT – KWF 2030 
2 Sägewerk, Furnierwerk, Hersteller von Parket, Fässern, Span- oder Faserplaten, Zellulosewerk, Papierfabrik, 
Hackschnitzelheizung, etc.  
3 Airborne Laser Scanning ALS  
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jeweils aktualisiert werden. Gelingt es, dies alles umzusetzen, kann ihr Poten�al erst ausgeschöp� werden, z.B. 

um die gesamte Holzbereitstellungskete umfassend zu steuern und zu op�mieren. Nachvollziehbare CO2-Bilan-

zen ermöglichen erstmals, die Waldökologie und Nachhal�gkeit in diese umfassende Op�mierung einzubeziehen 

und dies zweifelsfrei nachzuweisen. Zudem können Verwaltungsvorgänge vereinfacht, die Daten z.B. in die Natu-

ralbuchführung eingepflegt werden. Auch über ein Fortschreiben der Forsteinrichtungswerke wird bereits nach-

gedacht. In Verbindung mit von den Holz-LKW automa�siert erfassten Wegedaten wird aktuell an einem System 

zur intelligenten Steuerung der Holzlogis�k mit „grüner“ Routenwahl gearbeitet4. Angelehnt an die Konzepte von 

Industrie 4.0 werden zudem die technischen Voraussetzungen geschaffen zur digitalen Vernetzung aller Stake-

holder der Holzbereitstellungskete mitels Digitaler Zwillinge5 und einer leistungsfähigen, sicheren und vertrau-

enswürdigen Datenbasis6.  

AUTOMATISIERTES AUSLESEN INDIVIDUELLER ID-CODES DER STAMMABSCHNITTE  

Sensoren in den Aggregaten und Maschinen erfassen Holz- und Maschinendaten sowie Geoposi�onen. Um diese 

dem Holz korrekt zuordnen zu können, muss jeder einzelne Stamm/Stammabschnit eindeu�g iden�fiziert und 

im Verlauf der Holzbereitstellungskete mehrfach zweifelsfrei wiedererkannt werden [73]. Ak�ve Iden�fizierungs-

technologien beruhen auf der Markierung des Rohholzes, passive auf Merkmalen der Holzstruktur [109]. In das 

Aggregat lassen sich kostengüns�ge und robuste Markierungssysteme integrieren [105 - 108]. Diese sollen dann 

vom Forwarder, Holz-LKW und im Sägewerk automa�siert ausgelesen werden, um so eine durchgängig automa-

�sierte Prozesskete umzusetzen  (CO2For-IT).   

RFID-TAGS ZUR IDENTIFIKATION DES HOLZES  

Aggregate wurden ergänzt, um RFID-Tags an den Stammabschniten anzubringen, die dann mehrfach mit Sen-

soren ausgelesen und digital verarbeitet werden konnten [64-85]. In einem Projekt wurden die Bäume stehend 

mit RFID-Tags markiert und diese beim Rücken und Aufarbeiten mit einem Prozessor ausgelesen. Während ihrer 

Aufarbeitung wurden die Daten der Stammabschnite sowie ihr Bezug zum ursprünglichen Baum codiert, jeweils 

in einem neuen RFID-Tag abgelegt und dieser vom Prozessor an ihnen angebracht. Das Verfahren verursachte 

keine höheren Erntekosten als gewöhnliche Seilkran-Hiebe [65]. Ein praxisreifes, paten�ertes Verfahren mit sich 

im Zellulosebrei rückstandslos auflösender Befes�gung der RFID-Tags und einem System zu ihrer mehrfachen 

Wiederverwendung wurde von der Holzwirtscha� nicht angenommen [81-85]. Im Jahr 2024 in Österreich einge-

führte Markierungsplätchen mit integriertem RFID-Tag werden aktuell eingesetzt, um eine durchgängig automa-

�sierte Holzbereitstellungskete umzusetzen  (CO2For-IT).  Praxisversuche, sie mit einem Sensor am Ausleger des 

Forwarders/Kran des Holz-LKW auszulesen, verliefen vielversprechend.  

Insgesamt sind die Verfahren mit RFID-Tags robust und zuverlässig. Noch sind die o.g. Markierungsplätchen mit 

integriertem RFID-Tag erheblich teurer als die üblichen Markierungsplätchen. Bei Anwendung in Masse sind mar-

ginale Kosten der Tags und eine erhebliche Effizienzsteigerung der Holzbereitstellung zu erwarten [129].  

BIOMETRISCHE IDENTIFIKATION DES HOLZES  

Projekte zur Erstellung biometrischer Fingerabdrücke der Schni�lächen des Rundholzes haben vielversprechen-

de Ergebnisse erzielt. Dazu werden diese z.B. im Harvesteraggregat, im Polter und an der Kappsäge im Sägewerk 
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6 htps://www.kwh40.de/veroeffentlichungen/ 
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aufgenommen. Die Bilder werden digital analysiert, die Ergebnisse als eindeu�ge Codes dargestellt. Je nach Ver-

fahren und äußeren Bedingungen wird im frischen Holz eine hohe bis sehr hohe Wiedererkennungsrate erreicht. 

Das Problem einer starken Degrada�on der Schni�lächen bei längerer Lagerung im Wald sollte durch eine sehr 

feine Ansteuerung der Kappsäge im Sägewerk gelöst werden können [138-139].  

NACHHALTIGE UND LEGALE HERKUNFT DES HOLZES, BLOCKCHAIN UND SMART CONTRACTS 

Die nachhal�ge Ernte und legale Herkun� des bereitgestellten/gehandelten Holzes nachzuweisen, erfordert Tech-

nologien zu seiner Rückverfolgung. Ein digitaler Informa�onsfluss, zukün�ig vom Wald bis zum Endprodukt, erfor-

dert darüber hinaus Technologien zur Datenhaltung, Datenübertragung und Vernetzung. Ist dieser gegeben, 

ermöglicht er ein umfassendes Monitoring, das Erstellen von CO2-Bilanzen und eine gesamtheitliche Op�mierung 

aller Prozesse, verfahrenstechnisch, ökonomisch und ökologisch. Obwohl die Blockchain, ergänzt durch „Smart 

Contracts“, zwingend auf das Internet angewiesen ist, wird sie für Gebiete ohne Netzabdeckung aktuell als geeig-

nete Technologie betrachtet. In einem verbundenen Datenbank- und Hauptbuch-System speichert sie alle Trans-

ak�onen in verschlüsselten, in sich abgeschlossenen Paketen. Das Aneinanderreihen dieser Pakete ergibt eine 

nachprü�are Aufzeichnung [141-148]. Bei Anwendung einer verlässlichen Technologie zur Iden�fika�on des 

Holzes, ermöglicht diese den überprü�aren Nachweis seiner Nachhal�gkeit und legalen Herkun� und die Durch-

setzung geltenden Rechts im Falle illegal geernteten/gehandelten Holzes [141]. 

AKTIVITÄTSERKENNUNG AUF GRUNDLAGE DER AKTUELLEN GEOLOKATION  

Über die digitale Vernetzung der Holzbereitstellungskete und die Verfolgung des Holzes hinaus, können mit Sen-

soren und Ortungssystemen auf Grundlage globaler Satellitennaviga�on (GNSS) die Bewegungen von Menschen 

und Maschinen erkannt [150-155] und innerhalb dynamisch sich verändernder Umgebungen sichere Arbeits-

bereiche definiert werden [156, 157]. Sobald eine exakte Satellitennaviga�on auch im Wald möglich ist [155], 

sollen Inventuren via Fernerkundung selbst eine exakte Hiebsplanung auf Einzelbaumebene  (sic!)  und eine 

intelligente Gerätesteuerung ermöglichen  (Forstmaschinen bis hin zu autonom sich orien�erenden/arbeitenden 

Robotern).  Als ergänzendes Inventurverfahren könnten Forstmaschinen zukün�ig Bestandesparameter erfassen, 

z.B. Vorrat, Zuwachs, Verjüngung, Bestandes- und Bodenschäden usw., jeweils vor und nach der Holzernte [158].  

Bei aller Begeisterung für die technischen Möglichkeiten, erteilt der Autor Überlegungen, „eine exakte Hiebspla-

nung auf Einzelbaumebene“ ausschließlich digital zu erstellen, eine entschiedene Absage:  Da es die Bestandes-

entwicklung über Jahrzehnte hinweg steuert, ist das Auszeichnen  d i e  zentrale waldbauliche Tä�gkeit des Forst-

manns/der Fors�rau. Es  m u s s  draußen im Wald erfolgen, um jeden Zukun�sbaum und jeden Bedränger einzeln 

ansprechen zu können! Werden die Bäume dabei digital markiert  (im Digitalen Zwilling des Bestandes),  so ist 

das sicherlich der Königsweg.  

AKTIVITÄTSERKENNUNG AUF GRUNDLAGE VON TRAGBAREN SENSOREN  

Tragbare Sensoren können Ak�vitäten von Menschen und Maschinen und dabei au�retende Belastungen in Echt-
zeit erfassen. Zu Verfahrenstechnik, Ökonomie und Ökologie werden damit auch Arbeitssicherheit und Ergono-

mie einer objek�ven Erfassung und umfassenden Op�mierung zugänglich [160-165, 167, 168]. Diese Daten 

werden sinnvoll mit durch Fernerkundung und von Maschinen erfassten Daten sowie den wechselnden Geoloka-

�onen zusammengeführt. Prototypisch umgesetzt ist die Warnung des Harvesterfahrers mit Visualisierung in 

Virtual Reality, wenn sich ein Mensch seinem Gefahrenbereich nähert, in ihn eindringt, oder sich darin befindet.  



Smartphones und Smartwatches können RFID- und NFC-Tags auslesen, über GNSS die Geoloka�on bes�mmen, 

die Daten zwischenspeichern und sie übertragen, sobald Netzanbindung besteht. Sie eignen sich, um Daten aus-

zulesen  (Sensoren, Ergonomie, Forstmaschinen, etc.)  und damit auch das Rohholz verlässlich zu verfolgen [161].  

Daten werden zunehmend mit Künstlicher Intelligenz (KI) ausgewertet und über Funknetzwerke/Datensatelliten-

netze übertragen [150-168]. Dabei ist selbstverständlich sorgfäl�g auf den Schutz und die Sicherheit personen-

bezogener Daten zu achten.  

WISSENSLÜCKEN UND SICH ABZEICHNENDE CHANCEN  

Die geschilderten Technologien ermöglichen den Au�au differenzierter, gesamtheitlich op�mierter Systeme, um 

vielfäl�ge Ziele zu erreichen. Diese können und sollen sich gegensei�g überlappen/vernetzen. Sie sollten auf einer 

über alle Organisa�onsgrenzen hinweg einheitlichen, sicheren und vertrauenswürdigen Datenbasis au�auen 

[167-168]. Deren Umsetzung wird eher durch Befindlichkeiten und das ausgeprägte gegensei�ge Misstrauen 

innerhalb des ungemein heterogenen „Clusters Wald und Holz“, als durch vorhandene Fakten verhindert. 

Forschungsergebnisse zur Verbesserung der betrieblichen Effizienz und der Nachhal�gkeit durch den Einsatz digi-

taler Technologien in der forstlichen Praxis sind aktuell rar. Keefe et al. [3] halten eine deutliche Verlagerung der 

Forschung für erforderlich, von der Entwicklung und Evaluierung von Verfahren zur Datenerfassung und zur Fern-

erkundung hin, zur Nutzung der in Inventuren und den forstlichen Prozessen selbst erfassten Daten. Im Anhalt an 

sie schlägt der Autor folgende Prioritäten vor, um die Datenverwertung aus forstlichen Prozessen voranzutreiben:  

- Op�mierung der Waldinventuren  

- Op�mierung der forstlichen Planungen  (z.B. unter Einsatz von GIS/GNSS [6, 165, 170])  

- Op�mierung der Holzbereitstellung   

(Einbeziehen von CO2-Bilanzen [129-132]; Einbeziehen hochauflösender Karten, der Holzpreise und der 

Erntekosten, v.a. zur Planung der Holzbereitstellung in wenig oder nicht erschlossenen Gebieten)  

- Digitale Unterstützung waldbaulicher Verfahren   

(Fortschreibung der Naturalbuchführung/Forsteinrichtung; Klimawandel, fremdländische Baumarten; 

Umstellung von Plantagenwirtscha�/Ausbeutung von Naturwäldern zu nachhal�ger Forstwirtscha�,  

ggf. zu Agroforstwirtscha�; Einbeziehen ökologischer Parameter in Modellierungen; etc.)  

- Maschinennaviga�on für eine verbesserte Automa�sierung und Robo�k   

(Fernerkundung mit Individual Tree Detec�on ITD; Simultaneous Localiza�on and Mapping SLAM; etc.  

Durch Sensoren an der Forstmaschine erkannte Bäume werden mit einer vorhandenen Karte abgeglich-

en. Das verbessert die Posi�onsgenauigkeit des Baumes, der Maschine und/oder des Aggregats. Stat 

en�ernter, sich bewegender Satelliten, wird der Wald selbst zu einer leistungsstarken Konstella�on 

fester Referenzpunkte, die für die Dauer der Umtriebszeit an derselben Stelle verbleiben.)   

- Übermitlung und Korrektur des jeweiligen Standorts vom stehenden Baum bis zum Werk   

(Verbesserung der Genauigkeit der Geoposi�on; lückenlose Verfolgung des Holzes [40, 73]; automa-

�sches Anbringen kostengüns�ger Markierungen [65] oder markierungslose Iden�fika�on durch das 

Harvesteraggregat; direkte Datenübermitlung machine-to-machine (M2M) in Echtzeit [7, 9]; etc.)  

- Verwaltung großer Datenmengen, auch in abgelegenen Umgebungen   

(Datenbasis, Digitale Zwillinge, Kommunika�on machine-to-machine (M2M) in Echtzeit; tägliches Ausle-

sen der Edge-Devices der Maschinen und Geräte mit Smartphones als mobile Zwischenspeicher und 

Übermitlung an die Datenbasis, sobald Anbindung an das Telefonnetz/Internet besteht; Einsatz von 

Künstlicher Intelligenz (KI); etc.).  



Es sei erneut dringend davor gewarnt, sich von einer erheblich verbesserten Informa�onsgrundlage dazu verlei-

ten zu lassen, Entscheidungsprozesse zu automa�sieren. Umfangreiche, hochwer�ge Datensätze, Auswertungs-

algorithmen und Modellierungen sind mäch�ge Werkzeuge und damit sehr wertvolle Entscheidungshilfen. Trotz 

ihrer hervorragenden Leistungsfähigkeit sind aber auch sie nur Werkzeuge. Wich�ge Entscheidungen kann und 

muss allein der Mensch treffen. Dazu muss er ggf. all seine Kompetenzen und Erfahrungen einsetzen - und seine 

Entscheidungen anschließend in aller Konsequenz verantworten!  

ZUSAMMENFASSUNG  

Für die Planung, Steuerung und das Monitoring des Waldmanagements stehen zunehmend leistungsfähige digi-

tale Werkzeuge aus Fernerkundung, EDV und KI zur Verfügung. Neben der Erfassung und Auswertung vieler sehr 

unterschiedlicher Daten, sind diese zukün�ig sinnvoll zu verknüpfen und opera�v anzuwenden. Dazu ist eine um-

fassende Vernetzung aller beteiligten Personen, Organisa�onen, Maschinen und Geräte über alle Organisa�ons-

grenzen hinweg erforderlich. Eine sichere Kommunika�on und die Übermitlung auch großer Datenmengen in 

Echtzeit müssen dabei gewährleistet sein. Es bietet sich an, dies über Digitale Zwillinge, eine einheitliche, sichere 

und vertrauenswürdige Datenbasis und den Einsatz der Blockchain aufzubauen. Ob Land- oder Forstwirtscha�, 

Gewinnung von Trinkwasser, Umweltschutz, oder Schutz vor Naturgefahren, wir sitzen alle im gleichen Boot - und 

bekommen eine wertvolle Chance, uns konstruk�v miteinander zu vernetzen.  

Für abgelegene Gebiete erschließt die ITD-Fernerkundung  (Individual Tree Detec�on)  neue Möglichkeiten zur 

differenzierten Planung, Durchführung und Kontrolle waldbaulicher Maßnahmen, der Walderschließung, der 

Holzernte  (incl. ihrer Ernteeinheiten)  und der Holzabfuhr. Fernerkundung kann mitels Satelliten, Flugzeugen, 

Drohnen und/oder terrestrisch erfolgen. Die Datenerfassung erfolgt mit Kameras verschiedener Spektral-

bereiche, Radar, LiDAR und verschiedenen Sensoren, ihre Auswertung mit photogrammetrischen Verfahren und 

Algorithmen, incl. Künstlicher Intelligenz (KI). Die Ergebnisse werden je nach Zweck und Zielgruppe bildlich, gra-

phisch, tabellarisch, in Texten oder mitels Virtual Reality dargestellt. Durch Kombina�on unterschiedlicher 

Trägersysteme und/oder Sensortechniken, kann man ihre Qualität gezielt steigern.  

Um eine durchgängige Verfolgbarkeit und Rückverfolgbarkeit jedes einzelnen Stammes/Stammabschnits zu ge-

währleisten, müssen diese eindeu�g iden�fiziert und entlang der gesamten Holzbereitstellungskete mehrfach 

zweifelsfrei re-iden�fiziert werden können. Dazu stehen Technologien mit und ohne Markierung zur Verfügung, 

die einem automa�sierten Anbringen/Auslesen zugänglich sind. Aktuell erscheint die Markierung des Holzes mit 

passiven RFID-Tags als geeignet, um die gewünschte vollständige Automa�sierung mitelfris�g umzusetzen. 

Robuste Hüllen und leistungsfähige Antennen habenihre Bewährungsprobe in der rauen Praxis bestanden. In 

ihnen können Daten über einzelne Bäume/Stämme/Stammabschnite auch längerfris�g gespeichert, ggf. mehr-

fach um neue Daten ergänzt und unkompliziert ausgelesen werden. Dazu können sie, entsprechende Systeme 

vorausgesetzt, mehrfach wiederverwendet werden.  

Die Blockchain als verteilter, verifizierbarer Mechanismus bietet sich an zur Organisa�on des Datenraums, zur 

Überprüfung der Holzbereitstellungskete und für Zer�fizierungen im Forst, Holzhandel und der Holzwirtscha�. 

Systeme zur Erkennung menschlicher wie maschineller Ak�vitäten, z.B. im sicherheitsrelevanten Umfeld einer 

(Forst-) Maschine, erhöhen die Arbeitssicherheit und verbessern die Ergonomie. Dazu ermöglichen sie auch die 

Verfolgung des Rohholzes/einzelner Produkte über die gesamte Bereitstellungskete hinweg.  

Viele Komponenten, die erforderlich sind, um die Informa�onen und Assets der Forstwirtscha� digital miteinan-

der zu vernetzen, sind bereits vorhanden und erprobt, wenn auch in unterschiedlicher Qualität. Um das sich aus 

der digitalen Vernetzung ergebende Poten�al tatsächlich heben zu können, gilt es nun, noch bestehende Lücken 

zu schließen, die Vernetzung technisch zu ermöglichen und sie gemeinsam in die Praxis umzusetzen.  
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