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Forstliche Prozesse im engeren Sinne sind alle Prozesse, die im Zusammenhang mit der geregelten Waldbewirt-

scha�ung stehen. Dazu gehören das Erstellen von Planungen  (z.B. Forsteinrichtung, Jahres-, Hiebsplanung, 

Planungen der Walderschließung, des Forstschutzes, etc.),  die Planung, Durchführung und Abrechnung von Maß-

nahmen der Walderschließung, der Bestandespflege  (Kulturpflege, Jungbestandspflege, Durchforstung),  der 

Holzbereitstellung  (Auszeichnen, Fällen von Bäumen, Aufarbeiten ihres Derbholzes zu Stämmen/Stammabschnit-

ten definierter Sor�mente, Vorrücken, Rücken und Poltern, Holzverkauf, Holzabfuhr),  von Schutzmaßnahmen  

(z.B. gegen Lawinen, Hochwasser, Waldbrand, etc.),  oder der Jagd, etc..  

Dazu kommen die Waldbewirtscha�ung direkt/indirekt unterstützende Prozesse, sei es, dass sie erforderliche 

Informa�onen bereitstellen  (z.B. Landkarten  (topographisch, thema�sch, z.B. Baumarten, Altersklassen, etc.),  

heute überwiegend digital, Datenerfassungen  (Boden-, Vegeta�ons-, Bestandes-, Standortskar�erung, Erfassung 

von Klimadaten, hygrologischen Daten, etc.),  terrestrisch, mitels Drohne, Flugzeug oder Satelliten, etc. 

Datenbanken, Forschung und Lehre),  sei es, dass sie die technischen Voraussetzungen dafür bereitstellen, diese 

Informa�onen aufzubereiten, miteinander zu kombinieren, in geeigneter Form zu visualisieren, zu bearbeiten, zu 

nutzen, auszuwerten, zu übermiteln sowie die Kommunika�on zu gewährleisten.  

Über die gezielte Datenerfassung anlässlich verschiedener Inventuren hinaus, werden insbesondere bei der Holz-

bereitstellung mit modernen, computergesteuerten Forstmaschinen automa�siert Daten unterschiedlicher Kate-

gorien erhoben  (Geoloka�onen, Waldeigentümer, Holzdaten, Maschinendaten, etc.).  Das eröffnet neue Möglich-

keiten, diese zielführend zu verarbeiten und einzusetzen:  

DIREKTE MESSUNG DER HOLZDATEN MIT SENSOREN AN HARVESTERAGGREGATEN   

Harvesteraggregate/Prozessoren messen den Stammdurchmesser mit Sensoren in den Entastungsmessern oder 

Vorschubwalzen, die Länge mit einem Messrad [98]. Die Baumart wird vom Maschinenführer eingegeben. Auf 

Grundlage sta�s�scher Durchschnitswerte der Stammkurven und der Rindenstärke errechnet der Bordcomputer 

daraus die Holzmasse [99]. Er speichert die jeweiligen Holzdaten, Maschinendaten und Geoposi�onen im de facto 

standardisierten Format StanForD [158, 159]. Harvesteraggregate sind nicht eichbar und müssen regelmäßig 

kalibriert werden. Aufgrund von Messungenauigkeiten und Abweichungen der unterstellten sta�s�schen Werte 

von den tatsächlichen Maßen der Bäume sind die von ihnen automa�siert ermitelten Holzdaten, insbesondere 

die Holzmasse, nur als Schätzwerte zu betrachten [99]. Dazu weisen die vom Harvester automa�siert ermitelten 

Geoposi�onen sehr starke Schwankungen ihrer Genauigkeit auf. Zur intelligenten Prozesssteuerung der Holzernte 

und -logis�k sowie für den Holzverkauf sind beide aber hinreichend genau. Flotenmanagementprogramme der 

verschiedenen Hersteller moderner Forstmaschinen nutzen dies bereits für die Holzernte und, in Verbindung mit 

den Maschinendaten, für die vorausschauende Wartung der Maschinen. Zur Abrechnung des gekau�en Holzes 

können die Holzdaten dann mit den präzisen Maßen der geeichten Werkseingangsvermessung des Holzkäufers2 

korrigiert werden. Zusätzlich können auf ihrer Grundlage CO2-Bilanzen bis auf Ebene der einzelnen Stämme/-

Stammabschnite erstellt und alle Prozesse/ die Holzbereitstellungskete insgesamt umfassend op�miert werden 

[129]. Bisher werden die vom Harvester automa�siert ermitelten Holzdaten und Geoposi�onen verworfen. Das 

Holz wird nach dem Rücken erneut manuell aufgenommen und eine Holzliste erstellt [158]. Dies ist personal- und 
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zeitaufwendig. Die manuelle Messung der Holzdaten ist zudem weniger genau als das Harvestermaß. Dasselbe 

gilt meist für die Ermitlung der Geoposi�onen der Polter mit dem Notebook des Revierleiters.  

Von Harvestern gemessene Holzdaten und Geoposi�onen wurden als Referenzdaten für ALS3-basierte Wald-

inventuren verwendet [100]. Um aus den Stammlängen die Baumhöhen ableiten zu können werden neue Algo-

rithmen entwickelt [101]. Diese sollen Harvester-basierte Inventuren und Analysen durch Integra�on mit 

tradi�onellen Inventur- und Forstwirtscha�sdaten erleichtern.  

ÜBERTRAGUNG DER HOLZDATEN, EINES TEILS DER MASCHINENDATEN UND DER JEWEILIGEN 

GEOLOKATIONEN SOWIE DEREN AGGREGATION ENTLANG DER HOLZBEREITSTELLUNGSKETTE  

Die Holzbereitstellungskete umfasst den Einschlag der Bäume, ihre Aufarbeitung zu mark�ähigen Sor�menten, 

das Rücken und Poltern des Holzes, getrennt nach Sor�menten, den Holzverkauf und die Holzabfuhr. Die vom 

Harvester automa�siert erfassten Holzdaten und Geoloka�onen, sowie die zur Berechnung der CO2-Bilanzen 

erforderlichen Maschinendaten, sollen jeweils unmitelbar zum Forwarder, zum Polter, zum Holzverkauf, an den 

Käufer und zum Holz-LKW übertragen werden. Dabei sollen sie zu Poltern, Losen und Holzlisten aggregiert und 

jeweils mit ihrer neuen Geoloka�on verbunden werden. Gelingt es, dies alles umzusetzen, kann ihr Poten�al erst 

ausgeschöp� werden, z.B. um die gesamte Holzbereitstellungskete umfassend zu steuern und zu op�mieren. 

Nachvollziehbare CO2-Bilanzen ermöglichen erstmals, die Waldökologie und Nachhal�gkeit in diese umfassende 

Op�mierung miteinzubeziehen und dies zweifelsfrei nachzuweisen. Zudem können Verwaltungsvorgänge verein-

facht und die Daten z.B. in die Naturalbuchführung eingepflegt werden, um diese immer aktuell zu halten. Auch 

über ein entsprechendes Fortschreiben der Forsteinrichtungswerke wird bereits nachgedacht. In Verbindung mit 

von den Holz-LKW automa�siert erfassten Wegedaten wird aktuell an einem System zur intelligenten Steuerung 

der Holzlogis�k mit „grüner“ Routenwahl gearbeitet4. 

Im Anhalt an die Konzepte von Industrie 4.0 werden aktuell die technischen Voraussetzungen geschaffen zur 

digitalen Vernetzung aller Stakeholder der Holzbereitstellungskete:  

- Eine leistungsfähige, sichere und vertrauenswürdige Datenbasis  

- Die Vernetzung der beteiligten Organisa�onen, Personen und Maschinen  

(mitels Digitaler Zwillinge (DZ)5 im Internet der Dinge (IoT))  

- Die sichere, eindeu�ge und vollständige Datenübertragung  (zwischen den DZ und zur Datenbasis)  

- Die Aggrega�on der Holzdaten zu Poltern, Losen und Holzlisten  

- Ihre Verknüpfung mit der jeweils veränderten Geoposi�on  

- Sensoren auf Maschinen, Geräten  (incl. der „smarten“ Motorsäge!)  und ggf. an Personen:  

• Zur zweifelsfreien Detek�on jedes einzelnen Stammes/Stammabschnits/Polters Energieholz  

• Zur präzisen Ermitlung seiner jeweiligen Geoposi�on  

• Bei  (motor-) manuellen Arbeiten zusätzlich zur Ermitlung unterschiedlicher Belastungen des 

arbeitenden Menschen  

- Korrekturmöglichkeiten für die Maschinenführer und Änderungsmöglichkeiten für den Holzverkauf  

- Erstellung von CO2-Bilanzen insgesamt und auf Ebene der einzelnen Stämme/Stammabschnite  

- „Grüne“ Routenwahl für die Holzabfuhr mit LKW.  
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AUSLESEN INDIVIDUELLER ID-CODES DER STAMMABSCHNITTE AN HARVESTERAGGREGATEN, 

PROZESSOREN UND EINHEITEN DER RÜCKETECHNIK  

Sensoren in den Aggregaten und Maschinen erfassen Holz- und Maschinendaten sowie Geoposi�onen. Es wurde 

versucht, zusätzlich die Holzdichte [105] oder eine Kombina�on mehrerer Qualitätsparameter zu erfassen, daraus 

einen Qualitätsindex zu errechnen [106] und damit das Holz, zusätzlich zu Baumart, Güte und Dimensionen, nach 

seiner Eignung für definierte Verwendungen zu sor�eren [65]. Um den bereitgestellten Stämmen/Stammab-

schniten die von/über sie jeweils erfassten Daten korrekt zuordnen zu können, muss jeder einzelne von ihnen 

eindeu�g iden�fiziert und im Verlauf der Holzbereitstellungskete mehrfach zweifelsfrei re-iden�fiziert werden 

[73]. Ak�ve Iden�fizierungstechnologien beruhen auf der Markierung des Rohholzes, passive auf verschiedenen 

Strukturmerkmalen des Holzes selbst [109]. In das Harvesteraggregat lassen sich kostengüns�ge und robuste 

visuelle Systeme integrieren, z. B. das Einstanzen oder Aufsprühen von Markierungen, [107, 108]. Diese sollen 

dann vom Forwarder, Holz-LKW und im Sägewerk automa�siert op�sch ausgelesen, in individuelle ID-Codes 

umgewandelt, die Daten übermitelt und in der Datenbasis gespeichert werden. Für das angestrebte durchgängig 

automa�sierte Verfahren sind aktuell noch nicht alle technischen Probleme gelöst.  

RFID-TAGS ZUR IDENTIFIKATION DES RUNDHOLZES MIT SENSOREN AN DEN FORSTMASCHINEN, 

HOLZ-LKWS UND IM SÄGEWERK  

In mehreren Forschungsprojekten wurden Harvesteraggregate mit Zusatzgeräten ausgestatet, um RFID-Tags an 

den Stammabschniten anzubringen [64-85]. In einem Bergwald wurden Bäume mit RFID-Tags markiert, motor-

manuell gefällt, mit Seilkran vorgerückt und mit einem Prozessor aufgearbeitet. Die RFID-Tags wurden mit Senso-

ren an der Lau�atze des Seilkrans und am Prozessor ausgelesen. Zusätzliche Sensoren am Prozessor erfassten 

automa�sch die Qualität und die Holzdichte der aufgearbeiteten Stammabschnite. Diese Daten sowie der Bezug 

zum ursprünglichen Baum wurden codiert, in einem neuen RFID-Tag abgelegt und dieser vom Prozessor an jedem 

Stammabschnit angebracht. Mitels der zusätzlich erhobenen Daten wurden die Stammabschnite anschließend 

getrennt nach ihrer vorgesehenen Verwendung gepoltert. Das Verfahren verursachte keine höheren Erntekosten, 

als gewöhnliche Seilkran-Hiebe [65]. Ein praxisreifes, paten�ertes Verfahren mit sich im Zellulosebrei rück-

standslos auflösender Befes�gung der RFID-Tags und einem System zu ihrer mehrfachen Wiederverwendung 

wurde von der Holzwirtscha� nicht angenommen [81-85].  

Im Jahr 2024 in Österreich eingeführte Markierungsplätchen mit integriertem RFID-Tag werden aktuell einge-

setzt, um eine durchgängig automa�sierte Holzbereitstellungskete umzusetzen  (CO2For-IT).  Praxisversuche, sie 

mit einem Sensor am Ausleger des Forwarders/Kran des Holz-LKW auszulesen, verliefen vielversprechend. Eine 

wissenscha�liche Veröffentlichung dazu ist in Vorbereitung.  

Insgesamt sind die Verfahren mit RFID-Tags robust und zuverlässig. Noch sind die o.g. Markierungsplätchen mit 

integriertem RFID-Tag erheblich teurer als die üblichen Markierungsplätchen. Bei Anwendung in Masse sind mar-

ginale Kosten der Tags und eine erhebliche Effizienzsteigerung der Holzbereitstellung zu erwarten [129].  

 

 

 



BIOMETRISCHE IDENTIFIKATION DES RUNDHOLZES MIT SENSOREN AN DEN FORSTMASCHINEN 

UND IM SÄGEWERK  

Projekte zur Erstellung biometrischer Fingerabdrücke der Schni�lächen des Rundholzes haben vielversprechen-

de Ergebnisse erzielt. Dazu werden diese z.B. unmitelbar nach dem Trennschnit im Harvesteraggregat, im Polter 

und an der Kappsäge vor der Sor�eranlage des Sägewerks aufgenommen. Die Bilder werden digital analysiert, 

die Ergebnisse als eindeu�ge Codes mit geringem Datenvolumen dargestellt. Je nach Verfahren und äußeren 

Bedingungen wird eine hohe bis sehr hohe Wiedererkennungsrate erreicht. [138-139] Das Problem der Degrada-

�on der Schni�lächen bei längerer Lagerung im Wald sollte durch eine feinere Steuerung der Kappsäge gelöst 

werden können.  

NACHHALTIGE UND LEGALE HERKUNFT DES HOLZES, BLOCKCHAIN UND SMART CONTRACTS 

Der Nachweis der Nachhal�gkeit und der legalen Herkun� des bereitgestellten/gehandelten Holzes erfordert 
Technologien zu seiner Rückverfolgung. Ein digitaler Informa�onsfluss, zukün�ig vom Wald bis zum Endprodukt, 

erfordert Technologien zur Datenübertragung und Vernetzung. Ist dieser gegeben, ermöglicht er ein umfassendes 

Monitoring, das Erstellen von CO2-Bilanzen und eine gesamtheitliche Op�mierung aller Prozesse, verfahrenstech-

nisch, ökonomisch und ökologisch. Um dies auch in abgelegenen Gebieten ohne Internetverbindung und Mobil-

funknetz zu erreichen, wird aktuell die Blockchain als geeignete Technologie betrachtet. Hierbei handelt es sich 

um ein verbundenes Datenbank- und Hauptbuch-System, das alle Transak�onen in verschlüsselten, in sich abge-

schlossenen Paketen speichert. Das Aneinanderreihen dieser Pakete ergibt eine nachprü�are Aufzeichnung [141-

148]. Die Blockchain und „Smart Contracts“, ursprünglich entwickelt für Kryptowährungen, könnten die Grundlage 

bilden für Systeme zum überprü�aren Nachweis der Nachhal�gkeit und der legalen Herkun� des Holzes und zur 

Rechtsdurchsetzung im Falle illegal geschlagenen und/oder gehandelten Holzes [141].  

AKTIVITÄTSERKENNUNG AUF GRUNDLAGE DER JEWEILIGEN GEOLOKATION  

Die technischen Manipula�onen  (Fällen, Aufarbeiten)  des Rohholzes sollen zukün�ig durch Sensoren erfasst und 

aus den Maschinen- und Holzdaten der Forstmaschinen bzw. der „smarten“ Motorsäge ausgelesen werden. Zur 

Erfassung seiner räumlichen Manipula�onen  (Vorrücken, Rücken, Abfuhr)  werden Technologien zu seiner Ver-

folgung mit Ortungssystemen auf Grundlage globaler Satellitennaviga�on (GNSS) kombiniert. Deren Präzision 

kann durch Lage- und Bewegungssensoren in den Forstmaschinen und deren Auslegern erhöht werden [154]. 

Derar�ge Ortungssysteme können nicht nur die Bewegungen von Maschinen erkennen [150-155], sondern auch 

sichere Arbeitsbereiche innerhalb dynamischer Umgebungen definieren. Dazu müssen sie komplexe, ortsbezo-

gene Funk�onen mehrerer, sich bewegender Ressourcen in Echtzeit erfassen, verarbeiten und visualisieren, um 

das Situa�onsbewusstsein der arbeitenden Menschen und ihre Sicherheit zu verbessern [156, 157].  

Noch ungelöst ist die erhebliche Beeinträch�gung der Satellitennaviga�on durch Relief und Kronendach [155]. 

Die Genauigkeit differen�ell korrigierter GNSS-Posi�onierung des Harvesteraggregats kann unter einem Meter 

liegen, aber auch über zehn Meter! Sobald dieses Problem gelöst ist, sollen Inventuren via Fernerkundung selbst 

eine exakte Hiebsplanung auf Einzelbaumebene und eine intelligente Gerätesteuerung ermöglichen (sic!). 

Forstmaschinen könnten zukün�ig automa�siert auch Bestandesparameter erfassen, z.B. Vorrat, Zuwachs, Ver-

jüngung, Bestandes- und Bodenschäden usw., jeweils vor und nach der Holzernte [158].  

Bei aller Begeisterung für all die technischen Möglichkeiten, erteilt der Autor den genannten Überlegungen, das 

Auszeichnen oder gar „eine exakte Hiebsplanung auf Einzelbaumebene“ ausschließlich digital zu vollziehen, eine 

entschiedene Absage:  Da es die Bestandesentwicklung über Jahrzehnte hinweg steuert, ist das Auszeichnen  d i e  

zentrale waldbauliche Tä�gkeit des Forstmanns. Es muss unbedingt draußen im Wald erfolgen, um dabei jeden 



Zukun�sbaum und seine Bedränger einzeln ansprechen zu können! Werden die Zukun�sbäume und/oder die zu 

entnehmenden Bäume dabei digital markiert, am besten in dem bereits zuvor erstellten Digitalen Zwilling des 

Bestandes, so ist das sicherlich der Königsweg.  

AKTIVITÄTSERKENNUNG AUF GRUNDLAGE VON TRAGBAREN SENSOREN  

Beschleunigungsmesser und andere Sensoren in Smartphones, Smartwatches oder anderen mobilen und IoT-

Geräten können manuell und motormanuell ausgeführte Tä�gkeiten, aber auch durch diese verursachte Belast-

ungen des arbeitenden Menschen, in Echtzeit erfassen. Beispiele für vorwiegend manuelle Arbeiten im Wald 

finden sich bei der Bestandesbegründung incl. Wildschutz, dem Bau von Jagdeinrichtungen, der Kultur- und 

Jungbestandspflege, dem Wegebau und der Wegeunterhaltung. Zusätzlich zu Verfahrenstechnik, Ökonomie und 

Ökologie werden durch tragbare Sensoren auch die Arbeitssicherheit und Ergonomie einer objek�ven Erfassung 

und Op�mierung zugänglich [160, 167, 168]. Ihre Daten werden wiederum sinnvoll mit Fernerkundungs- und von 

Maschinen erfassten Daten sowie den wechselnden Geoloka�onen zusammengeführt. Gestützt auf eine solide 

Datenbasis können exakte Modelle der (motor-) manuellen Tä�gkeiten entwickelt und zur Planung, Kalkula�on 

und zum Monitoring eingesetzt werden [161-165]. Integriert man die Ak�vitätserkennung in Echtzeit der arbei-

tenden Menschen und der Maschinen mit ihrer Vernetzung in gemeinsamen Datenbanken, so ermöglicht dies 

nicht nur ein umfassendes Monitoring und eine entsprechend umfassende Op�mierung, sondern auch eine we-

sentliche Verbesserung der Arbeitssicherheit. Bereits prototypisch umgesetzt ist z.B. die Warnung des Harve-

sterfahrers mit Visualisierung in Virtual Reality, wenn sich eine Person seinem Gefahrenbereich nähert, in ihn 

eindringt, oder sich darin befindet.  

Smartphones und Smartwatches können heute RFID- und NFC-Tags auslesen, über GNSS die Geoloka�on bes�m-

men und die Daten über Apps speichern. Dies erleichtert u.a. die Verfolgung motormanuell aufgearbeiteten Roh-

holzes [161]. Um automa�siert erfasste Datensätze mit Hilfe der künstlichen Intelligenz auszuwerten, stehen 

Methoden des maschinellen Lernens wie Random Forests, künstliche neuronale Netzwerke und Deep Learning 

zur Verfügung. Die Nutzung der bestehenden Funknetzwerke oder neu entstehender Datensatellitennetze 

erweitert zukün�ig den Handlungsspielraum [150-168]. Wird dabei sorgfäl�g auf den Schutz und die Sicherheit 

personenbezogener Daten geachtet, steht einer posi�ven Entwicklung nichts im Wege. 

WISSENSLÜCKEN UND SICH ABZEICHNENDE CHANCEN  

Die aktuell oder in naher Zukun� verfügbaren digitalen Technologien und Verfahren für exakte Inventuren, Pla-

nungen,  (motor-) manuell ausgeführte Waldarbeiten, die lückenlose Verfolgung des Rohholzes entlang seiner 

gesamten Bereitstellungskete und der dazu erforderliche sichere Austausch von Daten, lassen technisch den 

Au�au differenzierter, bis zu Ende gedachter Systeme zu. Diese können ohne Weiteres auf einer über die Orga-

nisa�onsgrenzen aller Beteiligten hinweg einheitlichen Datenbasis au�auen. Blockchain kann es erleichtern, 

darin die Sicherheit und Vertrauenswürdigkeit der Datenübertragung und Datenhaltung zu garan�eren [167-168]. 

Hindernisse, die ihre Einführung verhindern, liegen eher an den Befindlichkeiten und dem ausgeprägten gegen-

sei�gen Misstrauen des ungemein heterogenen „Clusters Wald und Holz“.  

Aktuell liegen vergleichsweise wenige Forschungsergebnisse vor zur Verbesserung der betrieblichen Effizienz und 

der Nachhal�gkeit durch den Einsatz digitaler Technologien in der forstlichen Praxis. Keefe et al. [3] halten eine 

deutliche Verlagerung der Forschung für erforderlich, von der Entwicklung und Evaluierung von Verfahren zur 

Datenerfassung und zur Fernerkundung hin zur Nutzung der in Inventuren und den forstlichen Prozessen selbst 

erfassten Daten bei ihrer Planung und Durchführung. Im Anhalt an sie schlägt der Autor folgende Prioritäten vor, 

um die Datenverwertung aus forstlichen Prozessen voranzutreiben:  



- Op�mierung der Waldinventuren  

- Op�mierung der forstlichen Planungen  

- Op�mierung der Holzbereitstellung.  

Spezifische Vorgaben, seien sie ökologisch, waldbaulich, oder vom Holzmarkt bes�mmt, erfordern eine angemes-

sene Wahl unterschiedlicher Technologien, Verfahren oder Zeitpunkte für dieselbe Maßnahme, evtl. auch „nur“ 

einen anderen Verlauf der Feinerschließung. GIS bzw. GNSS kann zur Feinplanung von Rückegassen, Seiltrassen 

und Polterplätzen, oder zur Einrichtung intelligenter Holzlagerplätze oder Nasslager eingesetzt werden [6, 165, 

170]. Sind die Bestände bereits auf Ebene des Einzelbaumes digital erfasst, so lassen sich Maßnahmen präzise 

planen, kalkulieren und steuern. Jeder einzelne Baum ist dann ein Referenzpunkt für die Forstmaschinen bzw. für 

den Forstwirt. Ist noch kein „digitaler Bestand“ erstellt, so ermöglicht die oben beschriebene automa�sierte 

Erfassung und Übertragung der Holzdaten und Geoloka�onen durch Forstmaschinen, smarte Motorsägen 

und/oder tragbare Sensorsysteme entlang der Holzbereitstellungskete deren umfassende Überwachung, Steu-

erung und Op�mierung, die lückenlose Verfolgung des Rohholzes und die Erstellung detaillierter CO2-Bilanzen.  

- Einbeziehung hochauflösender Karten, der Holzpreise und der Erntekosten in die Planung der 

Holzbereitstellung  

Hochauflösende Karten vermiteln eine genaue Kenntnis der exakten Lage und Verteilung der Baumarten, ihrer 

Dimensionen und, mit Einschränkungen, ihrer Qualitäten. Daraus wir erho�, ihre Sor�mentsau�eilung und die 

voraussichtlichen Erntekosten in hinreichender Genauigkeit schätzen und ihre räumliche Ordnung und Erschlies-

sung bis hin zur Feinerschließung exakt planen zu können. In Abhängigkeit von Jahreszeit und Witerung, Markt-

anforderungen, Holzpreis und der verfügbaren Arbeitskapazität kann man die Sor�mentsausformung und den 

besten Zeitrahmen für die Holzernte und -Abfuhr festlegen. In wenig oder nicht erschlossenen Gebieten ermög-

licht das konsequente Ausschöpfen dieser Informa�onen eine weitgehende Op�mierung der Planung, des Voll-

zugs und des Ertrags der Holzernte.  

- Digitale Unterstützung waldbaulicher Verfahren   

Im Zuge des Klimawandels sollen fremdländische Baumarten in unsere Wälder integriert werden, zu deren wald-

baulicher Behandlung noch keine Erfahrungen vorliegen. Zudem sehen sich viele Länder mit vorherrschender 

Plantagen-Forstwirtscha� oder der großflächigen Ausbeutung weitgehend natürlicher Wälder vor die Notwendig-

keit gestellt, den nach Standorten wie waldbaulichen Verfahren fein differenzierten, pfleglichen und vor allem 

nachhal�gen, Waldbau der DACH-Länder und deren unmitelbarer Nachbarn zu erlernen und auf ihn umzustellen. 

Vor allem für die Naturverjüngung von Mischbeständen, die sich bis zu sechs Jahrzehnte lang mit der Holzernte 

überlappt, und den Au�au sowie die Pflege ungleichaltriger (Dauer-) Wälder erlauben es digitale Daten, die 

gezielte, räumliche wie zeitliche Steuerung der Anteile und der Verteilung der Baumarten vorab zu modellieren. 

In vom Menschen bisher wenig beeinflussten Wäldern mit hoher Baumartenvielfalt, wie z.B. in den USA, können 

anhand digitaler Bestandsdaten aus der Fernerkundung die zur Holzernte in Frage kommenden Baumarten auf 

Grundlage ihrer Geoloka�onen und Verteilung, Brusthöhendurchmesser, Höhe, Kronenmaße und ihres Stand-

raums nun vorherbes�mmt und alle Maßnahmen daran angepasst werden. Selbst ökologische Parameter wie die 

Topographie und die Lichtabsorp�on der Baumarten in Verbindung mit dem Mikroklima des Waldes können nun 

in Modellierungen eingehen, um sowohl „intelligente“ waldbauliche Verfahren als auch die bestmöglich daran 

angepassten Technologien zur Holzernte und Holzabfuhr zu berücksich�gen. Bei uns war das bisher der ökologi-

schen und waldbaulichen Kompetenz und Erfahrung des Forsteinrichters, Forstamtsleiters und Revierleiters 

vorbehalten. In den o.g. Ländern blieb es i.d.R. unberücksich�gt.  

 



Es sei erneut dringend davor gewarnt, sich von einer erheblich verbesserten Informa�onsgrundlage dazu verlei-

ten zu lassen, Entscheidungsprozesse zu automa�sieren. Umfangreiche, hochwer�ge Datensätze, Auswertungs-

algorithmen und Modellierungen sind mäch�ge Werkzeuge und damit sehr wertvolle Entscheidungshilfen. Trotz 

ihrer hervorragenden Leistungsfähigkeit sind aber auch sie nur Werkzeuge. Wich�ge Entscheidungen kann und 

muss allein der Mensch treffen. Dazu muss er ggf. all seine Kompetenzen und Erfahrungen einsetzen - und sie in 

aller Konsequenz verantworten!  

- Maschinennaviga�on für eine verbesserte Automa�sierung und Robo�k   

Bei der Erforschung von SLAM-Methoden  (Simultaneous Localiza�on and Mapping)  zur Automa�sierung der 

Maschinensteuerung und Robo�k wird davon ausgegangen, dass die exakte Geoposi�on der Stämme zu Beginn 

der Arbeiten nicht bekannt ist. Die ITD-Fernerkundung  (Individual Tree Detec�on)  und das Vorliegen digitaler 

Karten vor Beginn der Arbeiten vereinfachen die Verarbeitung von Naviga�onsalgorithmen. Durch den Ortungs-

vorgang zur Maschinensteuerung wird es einfacher, Strukturen erkannter Bäume  (durch an der Forstmaschine 

mon�erte LiDAR-, Bildverarbeitungs- oder andere Sensoren)  mit einer vorhandenen Karte abzugleichen. Das 

verbessert die Posi�onsgenauigkeit des Baumes oder ist ein besserer Ersatz für die GNSS-basierte Ortung der 

Maschine und/oder des Aggregats. Stat sich auf weit en�ernte, sich bewegende Satelliten zu verlassen, wird der 

Wald selbst zu einer leistungsstarken Konstella�on fester Referenzpunkte, die für die Dauer der Umtriebszeit an 

derselben Stelle verbleiben. Stat nur Interferenzen und Mehrwegabweichungen zu verursachen, werden die 

Bäume so zu wertvollen Geolokalisierungspunkte zur präzisen Steuerung von Maschinen bis zu Robotern.  

- Übermitlung und Korrektur des jeweiligen Standorts vom stehenden Baum bis zum Werk  

Für die Aufarbeitung von Kurzholz wurde bereits RFID-Technologie in das Harvesteraggregat integriert. Ein RFID-

Tag, der in Brusthöhe am stehenden Baum angebracht wurde, könnte nach der Fällung im Erdstammstück ver-

bleiben, automa�siert ausgelesen und über die gesamte Holzbereitstellungskete hinweg verfolgt werden. Die 

von dem ursprünglichen Baumstamm abgetrennten Stammabschnite werden jedoch von der im RFID-Tag am 

Erdstammstück gespeicherten Informa�on abgekoppelt. Um diese Stammabschnite verfolgen zu können, muss 

das Harvesteraggregat/der Prozessor zu ihrer Iden�fizierung beitragen. Entweder erfasst es/er dazu den biome-

trischen Fingerabdruck des Trennschnits zu dem jeweils nachfolgenden Stammabschnit, oder es/er bringt Mar-

kierungen daran an, am besten zusätzliche RFID-Tags. In beiden Fällen muss es/er diesem eine eindeu�ge ID, die 

Geoposi�on und die ID des ursprünglichen Baumes sowie seine eigene aktuelle Geoposi�on zuordnen. Das auto-

ma�sche Anbringen kostengüns�ger Markierungen wie z.B. Barcodes, QR-Codes, oder RFID durch das Harvester-

aggregat ist deshalb ein wich�ger Entwicklungsbereich [65].  

Werden die Bäume erst nach dem Rücken hochmechanisiert zu Kurzholz aufgearbeitet, müssen sowohl die zum 

Holzrücken eingesetzte Technik als auch der Prozessor an der Anlandesta�on dazu in der Lage sein, die Holzdaten 

und die ursprünglichen Geoposi�onen der Ganzbäume zu erfassen. Der Prozessor muss diese Daten darüber 

hinaus auf alle von ihm aufgearbeiteten Stammabschnite übertragen, jeweils durch ihre eigenen Daten ergänzen 

und ihnen eine neue ID zuordnen. Zur vollständigen Automa�sierung und Digitalisierung sollten sowohl der Skid-

der, der Forwarder, oder die Lau�atze des Seilkrans, als auch der Holz-LKW und ggf. die Maschinen zu seiner 

Entladung am Werkseingang die ID und den Datensatz jedes einzelnen Stammabschnits erfassen können. Dann 

ist jederzeit nachvollziehbar und nachweisbar, wo sich jeder einzelne Stammabschnit im Wald, auf den Transport-

wegen und im Werk gerade befindet [40, 73].  

- Verwaltung großer Datenmengen in abgelegenen Umgebungen   

Die IDs und Daten der Stämme/Stammabschnite, iden�fiziert und mehrfach re-iden�fiziert durch automa�siert 

auslesbare Technologien wie z.B. RFID, unmitelbar zwischen Maschinen zu übertragen und zur Op�mierung der 

Betriebsabläufe oder der Effizienz der Holzbereitstellungskete in Echtzeit künstliche Intelligenz (KI) einzusetzen, 



erfordert eine sehr hohe Datenspeicherungs- und Datenübertragungskapazität, Verarbeitungsleistung und Netz-

werkbandbreite. Im Wald sind diese Bedingungen aktuell meist nicht gegeben. Auf großer Fläche besteht dort 

aktuell keinerlei Netzabdeckung für Mobilfunk oder Internet. Eine funk�onale Datenübertragung machine-to-

machine (M2M) in abgelegenen Wäldern und die Übertragung von Daten in Echtzeit aus dem Wald via Internet 

in die Datenbasis müssen noch entwickelt werden [7, 9]. Datenerfassungs- und -verarbeitungssysteme in Kanada 

angewandter Forstechnik funk�onieren unabhängig von proprietärer Maschinenso�ware. Ihre M2M-Internet-

op�onen wurden bereits untersucht [7]. Die Größe der Datensätze bereits auf Ebene der Forstmaschinen sinnvoll 

zu reduzieren, kann dazu beitragen, den Bedarf an Netzwerkbandbreite zu verringern [9]. Die Zuverlässigkeit ver-

schiedener Vernetzungsop�onen in der Praxis sollte empirisch erprobt werden, um die Fähigkeiten und Grenzen 

der Systeme in realen Umgebungen zu ermiteln. In Deutschland reicht es vorläufig aus, wenn die Edge-Devices 

der Maschinen und Geräte zur Holzernte täglich ausgelesen und ihre Datensätze an die Datenbasis übermitelt 

werden, sobald Anbindung an das Telephonnetz besteht. Hierfür bieten sich Androids an als leistungsfähige mobi-

le Zwischenspeicher mit Internetanbindung. Die gewünschte Datenübertragung in Echtzeit aber ist aktuell ohne 

eine durchgängige Internetanbindung technisch  (noch)  nicht realisierbar.  

 

  



ZUSAMMENFASSUNG  

Es stehen zunehmend neue Werkzeuge aus Fernerkundung, EDV und KI für die Planung, Steuerung und das Mo-

nitoring des Waldmanagements zur Verfügung. Der Schwerpunkt der Forschung und Entwicklung sollte daher 

von Vorhersagealgorithmen und der Bewertung und Validierung von Fernerkundungsprodukten auf die sinnvolle 

Verknüpfung und opera�ve Anwendung der erfassten Daten verlagert werden. Ob Forstwirtscha�, die Gewin-

nung von Trinkwasser, Umweltschutz, oder der Schutz vor Naturgefahren, auch diesbezüglich sitzen wir alle im 

gleichen Boot - und bekommen eine Chance mehr, uns konstruk�v miteinander zu vernetzen.  

Die Kar�erung individueller Bestände mitels ITD-Fernerkundung  (Individual Tree Detec�on)  erfasst die Geopo-

si�onen und Stammvolumina der stehenden Bäume bis hin zu Sor�menten. Für abgelegene Gebiete erschließen 

sich dadurch neue Möglichkeiten zur differenzierten Planung, Durchführung und Kontrolle waldbaulicher Maß-

nahmen, der Walderschließung, der Holzernte incl. ihrer Ernteeinheiten und der Holzabfuhr. Fernerkundung kann 

mitels Satelliten, Flugzeugen, Drohnen und/oder terrestrisch  (ortsfest, auf Fahrzeugen, Maschinen und Geräten, 

tragbar oder „handheld“)  erfolgen. Neben Kameras verschiedener Spektralbereiche stehen Radar, LiDAR, Tempe-

ratur-, Feuch�gkeits-, akus�sche und andere Sensoren zur Verfügung. Ausgewertet werden sie durch ausgeklügel-

te photogrammetrische Verfahren und Algorithmen. Die Ergebnisse können je nach Zweck und Zielgruppe in viel-

facher Weise bildlich, graphisch, tabellarisch, in Texten oder mitels Virtual Reality dargestellt werden. Kombiniert 

man Aufnahmen desselben Gebietes/Bestandes mit unterschiedlichen Trägersystemen und/oder Sensortechni-

ken, kann man die Auflösung/Präzision/Qualität der gewünschten Informa�onen gezielt steigern. Zur vollständi-

gen Aufnahme z.B. der Brusthöhendurchmesser, Baumhöhen, Stamm- und Kronenvolumina aller Einzelbäume 

eines Bestandes bietet es sich bisher an, ihn sowohl terrestrisch, als auch mit einer Drohne mit LiDAR zu erfassen 

und die segmen�erten Punktwolken jeweils pro Einzelbaum miteinander zu verschneiden. Ganz neu steht eine 

Drohne zur Verfügung, die autonom im Bestand unterhalb des Kronendachs fliegen und diesen mit LiDAR erfassen 

kann. Aktuell  (01.2026)  steht dazu noch keine wissenscha�liche Veröffentlichung zur Verfügung.  

Um eine durchgängige Verfolgbarkeit und Rückverfolgbarkeit jedes einzelnen Stammes/Stammabschnits zu 

gewährleisten, müssen diese eindeu�g iden�fiziert und entlang der gesamten Holzbereitstellungskete mehrfach 

zweifelsfrei re-iden�fiziert werden können. Die Markierung mit passiven RFID-Tags in einer robusten Hülle ist 

geeignet, um auslesbare Daten über einzelne Bäume/Stämme/Stammabschnite längerfris�g zu speichern. For-

schungsprojekte versuchen die RFID-Tags nun automa�siert anzubringen und/oder auszulesen und ggf. um neue 

Daten zu ergänzen. Unterschiedliche Markierungen und der biometrische Fingerabdruck der Schni�lächen des 

Rohholzes sind weitere anwendbare Technologien zu seiner Verfolgung und Rückverfolgung.  

Die Blockchain als verteilter, verifizierbarer Mechanismus bietet sich an zur Organisa�on des Datenraums, zur 

Überprüfung der Holzbereitstellungskete und für Zer�fizierungen im Forst, Holzhandel und der Holzwirtscha�. 

Systeme zur Erkennung menschlicher wie maschineller Ak�vitäten, z.B. im sicherheitsrelevanten Umfeld einer 

Forstmaschine, ggf. gekoppelt mit RFID oder anderen Scan- und Iden�fizierungsmethoden, erhöhen nicht nur 

signifikant die Arbeitssicherheit, sondern ermöglichen auch die Verfolgung einzelner Forstprodukte über die 

gesamte Holzbereitstellungskete hinweg, vom geernteten Baum bis zum Werkseingang.  

Viele Komponenten, die erforderlich sind, um die Informa�onen und Assets der Forstwirtscha� digital miteinan-

der zu vernetzen, sind bereits vorhanden und erprobt, wenn auch in unterschiedlicher Qualität. Um das sich aus 

der digitalen Vernetzung ergebende Poten�al tatsächlich heben zu können, gilt es nun, noch bestehende Lücken 

zu schließen, die Vernetzung technisch zu ermöglichen und tatsächlich in die Praxis umzusetzen.  
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