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Forstliche Prozesse im engeren Sinne sind alle Prozesse, die im Zusammenhang mit der geregelten Waldbewirt-
schaftung stehen. Dazu gehéren das Erstellen von Planungen (z.B. Forsteinrichtung, Jahres-, Hiebsplanung,
Planungen der WalderschlieBung, des Forstschutzes, etc.), die Planung, Durchfiihrung und Abrechnung von Maf3-
nahmen der Bestandespflege (Kulturpflege, Lduterung, Jungbestandspflege, Durchforstung), die Planung, Durch-
flhrung und Abrechnung von MalRnahmen des Wegebaus oder von SchutzmaRnahmen (z.B. gegen Waldbrand,
Hochwasser, Lawinenschutz, etc.), die Planung, Durchfiihrung und Abrechnung von MaRnahmen der Holzbereit-
stellung (Auszeichnen, Féllen von Bdumen, Aufarbeiten ihres Derbholzes zu Stimmen/Stammabschnitten defi-

nierter Sortimente, Vorriicken, Riicken und Poltern, Holzverkauf, Holzabfuhr), etc..

Dazu kommen die Waldbewirtschaftung direkt/indirekt unterstiitzende Prozesse, sei es, dass sie erforderliche
Informationen bereitstellen (z.B. Landkarten (topographisch, thematisch, z.B. Baumarten, Altersklassen, etc.),
heute Uberwiegend digital, Datenerfassungen (Boden-, Vegetations-, Bestandes-, Standortskartierung, Erfassung
von Klimadaten, hygrologischen Daten, etc., terrestrisch, mittels Drohne, Flugzeug oder Satelliten, etc.), sei es,
dass sie die technischen Voraussetzungen dafiir bereitstellen, diese Informationen aufzubereiten, miteinander zu
kombinieren, in geeigneter Form zu visualisieren, zu bearbeiten, zu nutzen, auszuwerten, zu ibermitteln sowie

die Kommunikation zu gewahrleisten.

Uber die gezielte Datenerhebung mittels verschiedener Verfahren der Nah- und Fernerkundung hinaus werden
insbesondere wahrend der Holzbereitstellung mit modernen, computergesteuerten Forstmaschinen automatisiert
Daten unterschiedlicher Kategorien erhoben (Geolokationen, Waldeigentliimer, Holzdaten, Maschinendaten, etc.).

Dies erdffnet ein ganzes Blindel neuer Moglichkeiten. Diese werden im Folgenden kurz geschildert:

DIREKTE MESSUNG DER HOLZDATEN MIT SENSOREN AN HARVESTERAGGREGATEN

Harvesteraggregate/Prozessoren messen den Stammdurchmesser mit Sensoren in den Entastungsmessern oder
Vorschubwalzen, die Lainge mit einem Messrad [98]. Algorithmen im Bordcomputer errechnen die Holzmasse
auf Grundlage vorgegebener Durchschnittswerte der Stammkurven und der Rindenstadrke [99]. Harvesteraggre-
gate sind nicht eichbar. Trotz regelmaRiger Kalibrierung fihren Messungenauigkeiten und Abweichungen der
unterstellten statistischen Werte von den tatsachlichen Messwerten dazu, dald die vom Harvester ermittelten
Holzdaten, insbesondere die Holzmasse, nur als Schatzwerte zu betrachten sind [99]. Zur Steuerung der Holz-
ernte und -logistik sowie fiir den Holzverkauf sind sie hinreichend genau. Deshalb ist es sinnvoll, sie dazu zu
verwenden, statt sie, wie bisher, zu verwerfen, manuell neu zu messen und manuell eine neue Holzliste zu er-
stellen [158]. Im Datensatz des Harvesters sind sowohl Holzdaten als auch Maschinendaten im de facto standar-
disierten Format StanForD gespeichert [159]. Sie ,,nur” auszulesen ermdglicht eine intelligente Prozesssteue-
rung, wie sie in den Flottenmanagementprogrammen der verschiedenen Hersteller bereits flir die Holzernte
erfolgt. Zusatzlich konnen auf ihrer Grundlage COz-Bilanzen bis auf die Ebene der einzelnen Stamme/Stammab-

schnitte erstellt und die Prozesse der Holzbereitstellung entsprechend optimiert werden [129].

Von Harvestern gemessene Holzdaten und Geopositionen wurden als Referenzdaten fiir ALS-basierte Wald-
inventuren (Airborne LaserScanning) verwendet [100]. Um aus den Stammlangen die Baumhdohen ableiten zu
kdnnen werden neue Algorithmen entwickelt [101]. Diese sollen Harvester-basierte Inventuren und Analysen

durch Integration mit traditionellen Inventur- und Forstwirtschaftsdaten erleichtern.



UBERTRAGUNG DER HOLZDATEN, EINES TEILS DER MASCHINENDATEN UND DER JEWEILIGEN
GEOLOKATIONEN SOWIE DEREN AGGREGATION ENTLANG DER HOLZBEREITSTELLUNGSKETTE

Die Holzbereitstellungskette umfasst den Einschlag der Baume, ihre Aufarbeitung zu marktfahigen Sortimenten,
das Holzriicken, den Holzverkauf und die Holzabfuhr. Gelingt es, die vom Harvester erfassten Holzdaten jeweils
unmittelbar zum Forwarder, zum Polter, zum Holzverkauf, an den Kaufer und schliel3lich zum Holz-LKW zu tber-
tragen, sie dabei zu Poltern, Losen und Holzlisten zu aggregieren und sie gleichzeitig bei jeder neuen Station mit
ihrer jeweils neuen, hinreichend exakt gemessenen, Geolokation zu verbinden, so kann ihr Potential erst ausge-
schopft werden. In Verbindung mit den jeweiligen Maschinendaten kann die Holzbereitstellungskette dann Pro-
zess flir Prozess wie als Ganzes optimiert werden. Nachvollziehbare CO2-Bilanzen ermdglichen dariber hinaus,
sie bezliglich der Waldokologie und Nachhaltigkeit zu optimieren - und beides zweifelsfrei nachzuweisen. Die
flir die Abrechnung erforderlichen exakten Holzdaten werden dann in der geeichten Werkseingangsvermessung

z.B. des Sagewerks ermittelt.

Im Anhalt an die Konzepte von Industrie 4.0 werden derzeit die technischen Voraussetzungen geschaffen zur

digitalen Vernetzung aller Stakeholder der Holzbereitstellungskette:

- Eine leistungsfahige, sichere und vertrauenswirdige Datenbasis
- Die Vernetzung der beteiligten Organisationen, Personen und Maschinen
(mittels Digitaler Zwillinge (DZ) im Internet der Dinge (loT))
- Diesichere, eindeutige und vollstandige Datentibertragung (zwischen den DZ und zur Datenbasis)
- Die Aggregation der Holzdaten zu Poltern, Losen und Holzlisten
- lhre Verknipfung mit der jeweils veranderten Geoposition
- Sensoren auf Maschinen, Geraten (incl. der ,smarten” Motorsage!) und ggf. an Personen:
e  Zurzweifelsfreien Detektion jedes einzelnen Stammes/Stammabschnitts/Polters Energieholz
e  Zur prazisen Ermittlung seiner jeweiligen Geoposition
e Bei (motor-) manuellen Arbeiten zusatzlich zur Ermittlung unterschiedlicher Belastungen des
arbeitenden Menschen
- Korrekturméglichkeiten fiir die Maschinenfiihrer und Anderungsméglichkeiten fiir den Holzverkauf
- Erstellung von CO2-Bilanzen insgesamt und auf Ebene der einzelnen Stamme/Stammabschnitte

- ,Grine” Routenwahl fiir die Holzabfuhr mit LKW.

AUSLESEN INDIVIDUELLER ID-CODES DER STAMMABSCHNITTE AN HARVESTER- ODER
PROZESSORAGGREGATEN

Sensoren in den Maschinen und Harvesteraggregaten erfassen Maschinen- und Holzdaten. Es wurde versucht,
zusatzlich die Holzdichte [105] oder eine Kombination mehrerer Qualitdtsparameter zu erfassen und daraus ei-
nen Qualitatsindex [106] zu errechnen. Um diese Daten zur Optimierung der Holzbereitstellung und Holzver-
wendung nutzen zu kdnnen, muss jeder einzelne Stammabschnitt identifiziert und mehrfach zweifelsfrei re-
identifiziert werden [73]. Aktive Identifizierungstechnologien beruhen auf der Markierung des Rohholzes,
passive auf verschiedenen Strukturmerkmalen des Holzes selbst [109]. In das Harvesteraggregat lassen sich
kostengtinstige und robuste visuelle Systeme, wie z. B. das Einstanzen oder Aufspriihen von Markierungen,
integrieren [107, 108]. Diese sollen dann vom Forwarder, Holz-LKW und im Sagewerk automatisiert optisch
ausgelesen, in individuelle ID-Codes umgewandelt, die Daten Gbermittelt und in der Datenbasis gespeichert
werden. Fiir das angestrebte durchgangig automatisierte Verfahren sind derzeit noch nicht alle technischen

Probleme gel6st.



RFID-TAGS ZUR IDENTIFIKATION DES RUNDHOLZES MIT SENSOREN AN DEN FORSTMASCHINEN,
HOLZ-LKWS UND IM SAGEWERK

In mehreren Forschungsprojekten wurden Harvesteraggregate mit Zusatzgeraten ausgestattet, um RFID-Tags an
den Stammabschnitten anzubringen [64-85]. In einem Bergwald wurden Baume mit RFID-Tags markiert, motor-
manuell gefdllt, mit Seilkran vorgeriickt und mit einem Harvesteraggregat aufgearbeitet. Die RFID-Tags wurden
mit Sensoren an der Laufkatze des Seilkrans und am Prozessor ausgelesen. Zusatzliche Sensoren am Prozessor
erfassten die Qualitdt und die Holzdichte jedes aufgearbeiteten Stammabschnitts. Diese Daten sowie der Bezug
zum urspriinglichen Baum wurden automatisch codiert, in einem neuen RFID-Tag abgelegt und dieser vom Pro-
zessor an jedem Stammabschnitt angebracht. Mittels der zusatzlich erhobenen Daten wurden die Stammab-
schnitte anschlieBend getrennt nach ihrer vorgesehenen Verwendung gepoltert. Die Erntekosten insgesamt
unterschieden sich nicht von gewdhnlichen Seilkran-Hieben [65]. Ein praxisreifes, patentiertes Verfahren mit
sich im Zellulosebrei riickstandslos auflosender Befestigung der RFID-Tags wurde von der Holzwirtschaft nicht

angenommen [81-85].

Im Mérz 2024 wurden in Osterreich Markierungsplattchen der Firma Latschbacher mit integriertem RFID-Tag,
die mit einem Handgerat plus Android-App ausgelesen werden, in die Praxis eingefiihrt. Sie sind erheblich teu-
rer als die Gblichen Markierungsplattchen, so dal8 das Verfahren vorerst nur fiir Wertholz in Frage kommen
dirfte. Im Rahmen des Projektes CO2ForIT entwickelt das Werkzeugmaschinenlabor der RWTH Aachen (WZL)
ein Verfahren, diese Markierungsplattchen mit einem am Ausleger des Forwarders bzw. des Holz-LKWs montier-
ten Lesegerat automatisiert auszulesen. Insgesamt sind die Verfahren mit RFID-Tags robust und zuverlassig. Bei
breiterer Anwendung ist eine Kostensenkung fir die Tags und eine erhebliche Effizienzsteigerung der Holzbe-

reitstellung zu erwarten [129].

BIOMETRISCHE IDENTIFIKATION DES RUNDHOLZES MIT SENSOREN AN DEN FORSTMASCHINEN
UND IM SAGEWERK

Verschiedene Verfahren zur Erstellung biometrischer Fingerabdriicke der Schnittflaichen der Stammabschnitte
haben vielversprechende Ergebnisse erzielt. Dazu werden diese z.B. unmittelbar nach dem Trennschnitt im Har-
vesteraggregat, im Polter und an der Kappsédge auf dem Rundholzplatz des Sagewerks aufgenommen. Die Bilder
werden durch Analyse-Algorithmen zu eindeutigen Codes mit geringem Datenvolumen transformiert. Je nach
Verfahren und duBeren Bedingungen wird eine hohe bis sehr hohe Wiedererkennungsrate erreicht. [138-139]
Das Problem der Degradation der Schnittflachen bei langerer Lagerung im Wald sollte durch eine feinere An-

steuerung der Kappsage vor der Sortieranlage im Sagewerk gelost werden kénnen.

NACHHALTIGE HERKUNFT, KRYPTOWAHRUNGEN UND BLOCKCHAIN

Um die Nachhaltigkeit und legale Herkunft des Rohholzes Uber die gesamte Bereitstellungskette hinweg nachzu-
weisen, sind Technologien zu seiner Riickverfolgung erforderlich. Der digitale Informationsfluss vom Wald bis
zum Werk erfordert zusatzlich Technologien zur Datenlibertragung und Vernetzung. Diese ermdglichen zudem
ein umfassendes Monitoring, das Erstellen von CO2-Bilanzen und eine gesamtheitliche Optimierung, verfahrens-
technisch, 6konomisch und 6kologisch. Um dies auch in abgelegenen Gebieten ohne Internetverbindung und
Mobilfunknetz zu erreichen, wird aktuell die Blockchain als geeignete Technologie betrachtet. Hierbei handelt es
sich um ein verbundenes Datenbank- und Hauptbuch-System, das alle Transaktionen in verschliisselten, in sich
abgeschlossenen Paketen speichert. Das Aneinanderreihen dieser Pakete ergibt eine nachprifbare Aufzeichnung

[141-148]. Die Blockchain und ,,Smart Contracts”, urspriinglich entwickelt fiir die Kryptowahrungen, kénnten die



Grundlage bilden fiir Systeme zum Gberprifbaren Nachweis der Nachhaltigkeit und der legalen Herkunft des

Rohholzes und zur Rechtsdurchsetzung im Falle illegal geschlagenen und/oder gehandelten Holzes [141].

AKTIVITATSERKENNUNG AUF GRUNDLAGE DER JEWEILIGEN GEOLOKATION

Die technischen Manipulationen (Fillen, Aufarbeiten) des Rohholzes sollen zukiinftig durch Sensoren erfasst
und aus den Maschinen- und Holzdaten der Forstmaschinen bzw. der ,,smarten” Motorsdge ausgelesen werden.
Zur Erfassung seiner raumlichen Manipulationen (Vorricken, Riicken, Abfuhr) werden Technologien zu seiner
Verfolgung mit Ortungssystemen auf Grundlage globaler Satellitennavigation (GNSS) kombiniert. Deren Prazisi-
on kann durch Lage- und Bewegungssensoren in den Forstmaschinen und deren Auslegern erhéht werden
[154]. Derartige Ortungssysteme kdnnen nicht nur die Bewegungen von Maschinen erkennen [150-155], son-
dern auch sichere Arbeitsbereiche in dynamischen Umgebungen definieren und komplexe, ortsbezogene Funk-
tionen mehrerer, sich bewegender Ressourcen quantifizieren, um das Situationsbewusstsein und die Sicherheit
zu verbessern [156, 157]. Noch ungeldst ist die erhebliche Beeintrachtigung der Satellitennavigation durch Re-
lief und Kronendach [155]. Die Genauigkeit differentiell korrigierter GNSS-Positionierung des Harvesteraggre-
gats kann unter einem Meter liegen, aber auch tber zehn Meter! Sobald dieses Problem gelost ist, ermoglichen
Inventuren via Fernerkundung eine exakte Hiebsplanung auf Einzelbaumebene und eine intelligente Gerate-
steuerung. Auch ist die Erfassung von Bestandesparametern durch die Forstmaschinen, gleichzeitig mit der
Holzernte, denkbar, z.B. Vorrat, Zuwachs, Verjlingung, Bestandes- und Bodenschdden usw., jeweils vor und nach
der Holzernte [158].

Bei aller Begeisterung flr diese technischen Moglichkeiten sei darauf verwiesen, dal® das Auszeichnen, die
zentrale waldbauliche Tatigkeit des Forstmanns, unbedingt draulRen im Wald erfolgen muss, um jeden Zukunfts-
baum und seine Bedranger einzeln ansprechen zu kénnen!! Werden die Zukunftsbdume und/oder die zu ent-
nehmenden Badume dabei digital markiert, am besten in dem bereits zuvor erstellten Digitalen Zwilling des

Bestandes, so ist das sicherlich der Kdnigsweg.

AKTIVITATSERKENNUNG AUF GRUNDLAGE VON TRAGBAREN SENSOREN

Beschleunigungsmesser und andere Sensoren in Smartphones, Smartwatches oder anderen mobilen und loT-
Geraten kdnnen manuell und motormanuell ausgefiihrte Tatigkeiten, aber auch durch diese verursachte Belast-
ungen des arbeitenden Menschen, in Echtzeit erfassen. Beispiele flir vorwiegend manuelle Arbeiten im Wald
finden sich bei der Bestandesbegriindung incl. Wildschutz, dem Bau von Jagdeinrichtungen, der Kultur- und
Jungbestandspflege, dem Wegebau und der Wegeunterhaltung. Zusétzlich zu Verfahrenstechnik, Okonomie und
Okologie werden durch tragbare Sensoren auch Arbeitssicherheit und Ergonomie einer objektiven Erfassung und
Optimierung zuganglich [160, 167, 168]. Ihre Daten werden wiederum sinnvoll mit Fernerkundungs- und von
Maschinen erfassten Daten sowie den wechselnden Geolokationen zusammengefiihrt. Gestiitzt auf eine solide
Datenbasis kdnnen exakte Modelle der (motor-) manuellen Tatigkeiten entwickelt und zur Planung, Kalkulation
und zum Monitoring eingesetzt werden [161-165]. Integriert man die Aktivitatserkennung in Echtzeit der arbei-
tenden Menschen und der Maschinen mit ihrer Vernetzung in gemeinsamen Datenbanken, so ermoglicht dies
nicht nur ein umfassendes Monitoring und eine entsprechend umfassende Optimierung, sondern auch eine we-
sentliche Verbesserung der Arbeitssicherheit. Bereits prototypisch umgesetzt ist z.B. die Warnung des Harve-

sterfahrers mit Visualisierung in Virtual Reality, wenn sich eine Person in seinem Gefahrenbereich befindet.

Viele Smartphones und Smartwatches kdnnen heute RFID- und NFC-Tags auslesen, Giber GNSS die Geolokation
bestimmen und die Daten Gber Apps speichern. Dies erleichtert u.a. die Verfolgung motormanuell aufgearbeite-
ter Sortimente [161]. Um automatisiert erfasste Datensatze mit Hilfe der kiinstlichen Intelligenz auszuwerten,

stehen Methoden des maschinellen Lernens wie Random Forests, kiinstliche neuronale Netzwerke und Deep



Learning zur Verfligung. Die Nutzung der bestehenden Funknetzwerke oder neu entstehender Datensatelliten-
netze erweitert zukilinftig den Handlungsspielraum [150-168]. Wird dabei sorgfaltig auf den Schutz und die

Sicherheit der personenbezogenen Daten geachtet, steht einer positiven Entwicklung nichts im Wege.

WISSENSLUCKEN UND SICH ABZEICHNENDE CHANCEN

Die aktuell oder in naher Zukunft verfliigbaren digitalen Technologien und Verfahren fiir exakte Inventuren, Pla-
nungen, (motor-) manuell ausgefiihrte Waldarbeiten, die llickenlose Verfolgung des Rohholzes entlang seiner
gesamten Bereitstellungskette und der dazu erforderliche sichere Austausch von Daten, lassen technisch den
Aufbau differenzierter, bis zu Ende gedachter Systeme zu. Diese kdnnen ohne Weiteres auf einer tiber die Orga-
nisationsgrenzen aller Beteiligten hinweg einheitlichen Datenbasis aufbauen. Blockchain kann es erleichtern,
darin die Sicherheit und Vertrauenswiirdigkeit der Datenlibertragung und Datenhaltung zu garantieren [167-
168]. Hindernisse, die ihre Einfihrung verhindern, liegen eher an den Befindlichkeiten und dem ausgepragten

gegenseitigen Misstrauen des ungemein heterogenen ,,Clusters Wald und Holz".

Derzeit liegen vergleichsweise wenige Forschungsergebnisse vor zur Verbesserung der betrieblichen Effizienz
und der Nachhaltigkeit durch den Einsatz digitaler Technologien in der forstlichen Praxis. Keefe et al. [3] halten
eine deutliche Verlagerung der Forschung fiir erforderlich von der Entwicklung und Evaluierung von Verfahren
zur Datenerfassung und zur Fernerkundung hin zur Nutzung der in Inventuren und den forstlichen Prozessen
selbst erfassten Daten bei ihrer Planung und Durchfiihrung. Im Anhalt an sie schlagen wir die folgenden

Prioritdten vor, um die Datenverwertung aus forstlichen Prozessen voranzutreiben:

- Optimierung der Waldinventuren
- Optimierung der forstlichen Planungen

- Optimierung der Holzbereitstellung.

Spezifische Vorgaben, seien sie 6kologisch, waldbaulich, oder vom Holzmarkt bestimmt, erfordern eine ange-
messene Wahl unterschiedlicher Technologien, Verfahren oder Zeitpunkte fir dieselboe MaBnahme, evtl. auch
,hur” einen anderen Verlauf der FeinerschlieBung. GIS bzw. GNSS kann zur Feinplanung von Riickegassen, Seil-
trassen und Polterpldtzen, oder zur Einrichtung intelligenter Holzlagerplatze oder Nasslager eingesetzt werden
[6, 165, 170]. Sind die Bestdnde bereits auf Ebene des Einzelbaumes digital erfasst, so lassen sich MaRnahmen
prazise planen, kalkulieren und steuern. Jeder einzelne Baum ist dann ein Referenzpunkt fir die Forstmaschinen
bzw. fiir den Forstwirt. Ist noch kein ,,digitaler Bestand” erstellt, so ermoglicht die oben beschriebene automati-
sierte Erfassung und Ubertragung der Holzdaten und Geolokationen durch Forstmaschinen, smarte Motorsiagen
und/oder tragbare Sensorsysteme entlang der Holzbereitstellungskette deren umfassende Uberwachung, Steu-

erung und Optimierung, die liickenlose Verfolgung des Rohholzes und die Erstellung detaillierter CO2-Bilanzen.

- Einbeziehung hochauflésender Karten, der Holzpreise und der Erntekosten in die Planung der

Holzbereitstellung

Hochauflésende Karten vermitteln eine genaue Kenntnis der exakten Lage und Verteilung der Baumarten, ihrer
Dimensionen und, mit Einschrankungen, ihrer Qualitaten. Damit lassen sich ihre Sortimentsaufteilung und die
voraussichtlichen Erntekosten in hinreichender Genauigkeit schatzen und ihre raumliche Ordnung und Erschlies-
sung bis hin zur FeinerschlieBung exakt planen. In Abhangigkeit von Jahreszeit und Witterung, Marktanforder-
ungen, Holzpreis und der verfligbaren Arbeitskapazitdt kann man die Sortimentsausformung und den besten

Zeitrahmen fir die Holzernte und -Abfuhr festlegen. In wenig oder nicht erschlossenen Gebieten ermdglicht das



konsequente Ausschopfen dieser Informationen eine umfassende Optimierung der Planung, des Vollzugs und

des Ertrags der Holzernte.

- Digitale Unterstilitzung waldbaulicher Verfahren

Im Zuge des Klimawandels sollen fremdlandische Baumarten in unsere Walder integriert werden, zu deren
waldbaulicher Behandlung noch keine Erfahrungen vorliegen. Zudem sehen sich viele Lander mit vorherrschen-
der Plantagen-Forstwirtschaft oder der groRflachigen Ausbeutung weitgehend natirlicher Walder vor die Not-
wendigkeit gestellt, den nach Standorten wie waldbaulichen Verfahren fein differenzierten, pfleglichen und vor
allem nachhaltigen, Waldbau der DACH-Lander und deren unmittelbarer Nachbarn im Osten zu erlernen und
auf ihn umzustellen. Vor allem fir die Naturverjlingung von Mischbestdnden, die sich bis zu sechs Jahrzehnte
lang mit der Holzernte tberlappt, und den Aufbau sowie die Pflege ungleichaltriger (Dauer-) Walder erlauben es
digitale Daten, die gezielte, raumliche wie zeitliche Steuerung der Anteile und der Verteilung der Baumarten
vorab zu modellieren. In vom Menschen bisher wenig beeinflussten Waldern mit hoher Baumartenvielfalt, wie
z.B. in den USA, kdnnen anhand digitaler Bestandsdaten aus der Fernerkundung die zur Holzernte in Frage
kommenden Baumarten auf Grundlage ihrer Geolokationen und Verteilung, Brusthohendurchmesser, Hohe,
KronenmaRe und Standraum neuerdings vorherbestimmt und alle MaRnahmen fein daran angepasst werden.
Selbst 6kologische Parameter wie die Topographie und die Lichtabsorption der Baumarten in Verbindung mit
dem Mikroklima des Waldes kénnen nun in Modellierungen eingehen, um sowohl , intelligente” waldbauliche
Verfahren als auch die bestmoglich daran angepassten Technologien zur Holzernte und Holzabfuhr zu berick-
sichtigen. Bei uns war das bisher der 6kologischen und waldbaulichen Kompetenz und Erfahrung des Forstein-
richters, Forstamtsleiters und vor allem des Revierleiters vorbehalten. In den o.g. Landern blieb es unberick-
sichtigt. Es sei erneut dringend davor gewarnt, sich von einer erheblich verbesserten Informationsgrundlage
dazu verleiten zu lassen, Entscheidungsprozesse zu automatisieren. Umfangreiche, hochwertige Datensatze sind
wertvolle Entscheidungshilfen - aber eben nur Hilfen, Werkzeuge. Verantwortliche Entscheidungen, auf Grund-

lage seiner Kompetenzen und Erfahrungen, kann und muss allein der Mensch treffen!

- Maschinennavigation fiir eine verbesserte Automatisierung und Robotik

Bei der Erforschung von SLAM-Methoden (Simultaneous Localization and Mapping) zur Automatisierung der
Maschinensteuerung und Robotik wird davon ausgegangen, dass die exakte Geoposition der Stamme zu Beginn
der Arbeiten nicht bekannt ist. Die ITD-Fernerkundung (Individual Tree Detection) und das Vorliegen digitaler
Karten vor Beginn der Arbeiten vereinfachen jedoch die Verarbeitung von Navigationsalgorithmen fir die Ma-
schinensteuerung, Automatisierung und Robotik. Durch den Ortungsvorgang zur Maschinensteuerung wird es
viel einfacher, Strukturen erkannter Biume (durch an der Forstmaschine montierte LiDAR-, Bildverarbeitungs-
oder andere Sensoren) mit einer vorhandenen Karte abzugleichen. Das verbessert die Positionsgenauigkeit des
Baumes oder ist ein besserer Ersatz fiir die GNSS-basierte Ortung der Maschine und/oder des Aggregats. Statt
sich auf entfernte, bewegte Satelliten zu verlassen, wird der Wald selbst zu einer leistungsstarken Konstellation
fester Referenzpunkte, die fiir die Dauer der Umtriebszeit an derselben Stelle verbleiben. Statt nur Interferen-
zen und Mehrwegabweichungen zu verursachen, werden die Baume so zu wertvollen Geolokalisierungspunkte

zur prazisen Steuerung von Maschinen bis Robotern.

- Ubermittlung und Korrektur des jeweiligen Standorts vom stehenden Baum bis zum Werk

Bei der Aufarbeitung von Kurzholz wurde bereits RFID-Technologie in das Harvesteraggregat integriert. Ein RFID-
Tag, der in Brusthéhe am stehenden Baum angebracht wurde, kdnnte nach der Fallung im Erdstammestiick ver-

bleiben, von den Maschinen automatisiert ausgelesen und dadurch tber die gesamte Holzbereitstellungskette



hinweg verfolgt werden. Die von dem urspriinglichen Baumstamm abgetrennten Stammabschnitte werden je-
doch von der darin gespeicherten Information abgekoppelt. Um diese anderen Stammabschnitte verfolgen zu
kénnen, muss das Harvesteraggregat/der Prozessor zu ihrer Identifizierung beitragen. Entweder erfasst es/er
dazu den biometrischen Fingerabdruck des Trennschnitts des jeweils héheren Stammabschnitts, oder es/er
bringt daran zusétzliche RFID-Tags oder andere Markierungen an. In beiden Fillen muss es/er diesem eine ein-
deutige ID, die Geoposition und die Baumnummer des urspriinglichen Stammes sowie seine eigene aktuelle
Geoposition zuordnen. Das automatische Anbringen kostenglinstiger Markierungen wie z.B. Barcodes, QR-

Codes, oder RFID durch das Harvesteraggregat ist deshalb ein wichtiger Entwicklungsbereich [65].

Werden die Baume erst nach dem Riicken hochmechanisiert zu Kurzholz aufgearbeitet, miissen sowohl die zum
Holzriicken eingesetzte Technik als auch der Prozessor an der Anlandestation dazu in der Lage sein, die Holzda-
ten und die urspringlichen Geopositionen der Ganzbdume zu erfassen. Der Prozessor muss diese Daten dartiber
hinaus auf die von ihm aufgearbeiteten Stammabschnitte Gibertragen, jeweils durch ihre eigenen Daten ergédnzen
und ihnen eine neue ID zuordnen. Zur vollstandigen Automatisierung und Digitalisierung sollten sowohl der
Skidder, Forwarder, oder die Laufkatze des Seilkrans als auch der Holz-LKW und ggf. die Maschinen zu seiner
Entladung am Werkseingang dazu in der Lage sein, die ID und den Datensatz jedes einzelnen Stammabschnitts
zu erfassen. Dann ist jederzeit nachvollziehbar und nachweisbar, wo sich jeder einzelne Stammabschnitt im

Wald, auf den Transportwegen und im Werk gerade befindet [40, 73].

- Verwaltung groRer Datenmengen in abgelegenen Umgebungen

Die IDs und Daten der Stimme/Stammabschnitte, identifiziert und mehrfach re-identifiziert durch automatisiert
auslesbare Technologien wie z.B. RFID, unmittelbar zwischen Maschinen zu tGbertragen und zur Optimierung der
Betriebsabldufe oder der Effizienz der Holzbereitstellungskette in Echtzeit kiinstliche Intelligenz (Kl) einzusetzen,
erfordert eine enorme Kapazitat zur Datenspeicherung und -lUbertragung, Verarbeitungsleistung und Netzwerk-
bandbreite. Im Wald besteht auf groRRer Flache keinerlei Netzabdeckung fiir Mobilfunk oder Internet, dort sind
diese Bedingungen derzeit nicht gegeben. Es ist weitere Forschung erforderlich zur Entwicklung einer funktiona-
len Dateniibertragung machine-to-machine (M2M) in abgelegenen Wildern via Internet und zur Ubertragung
von Daten in Echtzeit aus dem Wald in die Datenbasis [7, 9]. Datenerfassungs- und -verarbeitungssysteme in
Kanada angewandter Forsttechnik funktionieren unabhangig von proprietdrer Maschinensoftware. Ihre M2M-
Internetoptionen wurden bereits untersucht [7]. Die GréRe der Datenséatze bereits auf Ebene der DZ Forstma-
schine sinnvoll zu verringern, kann dazu beitragen, den Bedarf an Netzwerkbandbreite zu verringern [9]. Die
Zuverlassigkeit verschiedener Vernetzungsoptionen in der Praxis sollte empirisch erprobt werden, um die Fahig-
keiten und Grenzen der Systeme in realen Umgebungen zu ermitteln. In Deutschland reicht es vorlaufig aus,
wenn die Edge-Devices der Maschinen und Gerdte zur Holzernte taglich ausgelesen und ihre Datensdtze an die
Datenbasis Gbermittelt werden, sobald Anbindung an das Telephonnetz besteht. Hierfiir bieten sich Androids
als leistungsfahige mobile Zwischenspeicher mit Internetanbindung an. Die gewiinschte Dateniibertragung in

Echtzeit aber erfordert (bislang) eine durchgéngige Internetanbindung.



ZUSAMMENFASSUNG

Es stehen zunehmend neue Werkzeuge aus Fernerkundung, EDV und KI fiir die Planung, Steuerung und das Mo-
nitoring des Waldmanagements zur Verfligung. Der Schwerpunkt der Forschung und Entwicklung sollte daher
von Vorhersagealgorithmen und der Bewertung und Validierung von Fernerkundungsprodukten auf die sinnvolle
Verknipfung und operative Anwendung der erfassten Daten verlagert werden. Ob Forstwirtschaft, die Gewin-
nung von Trinkwasser, Umweltschutz, oder der Schutz vor Naturgefahren, auch diesbeziglich sitzen wir alle im

gleichen Boot - und bekommen eine Chance mehr, uns konstruktiv miteinander zu vernetzen.

Die Kartierung individueller Bestdande mittels ITD-Fernerkundung (Individual Tree Detection) erfasst die Geopo-
sitionen und Stammvolumina der stehenden Baume bis hin zu Sortimenten. Fiir abgelegene Gebiete erschlieRen
sich dadurch neue Moglichkeiten zur differenzierten Planung, Durchfiihrung und Kontrolle waldbaulicher MaR-
nahmen, der WalderschlieBung, der Holzernte incl. ihrer Ernteeinheiten und der Holzabfuhr. Fernerkundung kann
mittels Satelliten, Flugzeugen, Drohnen und/oder terrestrisch (ortsfest, auf Fahrzeugen, Maschinen und Geréten,
tragbar oder ,,handheld”) erfolgen. Neben Kameras verschiedener Spektralbereiche stehen Radar, LiDAR, Tempe-
ratur-, Feuchtigkeits-, akustische und andere Sensoren zur Verfligung. Ausgewertet werden sie durch ausgekliigel-
te photogrammetrische Verfahren und Algorithmen. Die Ergebnisse kdnnen je nach Zweck und Zielgruppe bild-
lich, graphisch, tabellarisch, in Texten oder mittels Virtual Reality in vielfacher Weise dargestellt werden.
Kombiniert man Aufnahmen desselben Gebietes/Bestandes mit unterschiedlichen Trigersystemen und/oder
Sensortechniken, kann man die Auflosung/Prazision/Qualitdt der gewlinschten Informationen gezielt steigern.
Zur vollstandigen Aufnahme z.B. der Brusthéhendurchmesser, Baumhodhen, Stamm- und Kronenvolumina aller
Einzelbdume eines Bestandes bietet es sich an, ihn sowohl terrestrisch, als auch mit einer Drohne mit LiDAR zu

erfassen und die segmentierten Punktwolken jeweils pro Einzelbaum miteinander zu verschneiden.

Um eine durchgingige Verfolgbarkeit und Rickverfolgbarkeit jedes einzelnen Stammes/Stammabschnitts zu
gewdhrleisten, missen diese eindeutig identifiziert und entlang der gesamten Holzbereitstellungskette mehrfach
zweifelsfrei re-identifiziert werden kénnen. Die Markierung mit passiven RFID-Tags in einer robusten Hiille ist
geeignet, um auslesbare Daten Uber einzelne Bdume/Stamme/Stammabschnitte langerfristig zu speichern. For-
schungsprojekte versuchen die RFID-Tags nun automatisiert anzubringen und/oder auszulesen und ggf. um neue
Daten zu erganzen. Unterschiedliche Markierungen und der biometrische Fingerabdruck der Schnittflichen des

Rohholzes sind weitere anwendbare Technologien zu seiner Verfolgung und Riickverfolgung.

Die Blockchain als verteilter, verifizierbarer Mechanismus bietet sich an zur Organisation des Datenraums, zur
Uberpriifung der Holzbereitstellungskette und zu Zertifizierungen im Forst, Holzhandel und der Holzwirtschaft.
Systeme zur Erkennung menschlicher wie maschineller Aktivitaten, z.B. im sicherheitsrelevanten Umfeld einer
Forstmaschine, ggf. gekoppelt mit RFID oder anderen Scan- und Identifizierungsmethoden, erhéhen nicht nur
signifikant die Arbeitssicherheit, sondern ermdéglichen auch die Verfolgung einzelner Forstprodukte tber die

gesamte Holzbereitstellungskette hinweg, vom geernteten Baum bis zum Werkseingang.

Viele Komponenten, die erforderlich sind, um die Informationen und Assets der Forstwirtschaft digital miteinan-
der zu vernetzen, sind bereits vorhanden und erprobt wenn auch in unterschiedlicher Qualitat. Um das sich aus
der digitalen Vernetzung ergebende Potential tatsdchlich heben zu kénnen gilt es nun, Liicken zu schlieRen, die

Vernetzung technisch herbeizufiihren und dann in die Praxis umzusetzen.
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